

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \le q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011.

Question 2

(Suffix Tries)

- (1) Draw the suffix tree for the string s = abracadabra.
- (2) What is the longest substring that appears more than once in the string s = abracadabra?
- (3) How can we generally find the longest substring appearing more than once given a suffix trie?

Question 3

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based upon forward pattern matching, in which a failure function (also named as "suffix function") is calculated to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically, for a pattern P, its corresponding failure function $F_P(j)$, or F(j) for short, is defined as

$$F(j) := \max_{k} \left\{ k \leq j-1 : P[0:k] = P[j-k:j] \right\}.$$

In other words, F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j]. In brief, the KMP algorithm can be described as: When a mismatch occurs at T[i], if you are

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Answer the following questions:

(1) Apply the KMP algorithm to the Boyer-Moore pattern matching problem in previous PSO, where

$$T:=\underbrace{aaaaaaaaa}_{0}$$
 and $P:=baaaaa$.

- 1. Does it perform much better than Boyer-Moore?
- (2) What is the failure function for the pattern P := "mamagama"?
- (3) Let T := "rahrahahahahromaromamagagaoohlala", run the KMP pattern matching algorithm for the pattern P in (2).

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \leq q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011. n = 13

Lexigraphic Ordering Practice:

- 'c' vs 'ab'
- 'abc' vs 'abca' 'abbbbb' vs 'baaaaa'

trie insert BSt ment but with letter

80,18

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \le q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011. $SS(T) = \{0, 01, 10, 100, 1011\}$

first tric Starts out as a null root Form the trie for S M: not intric. 1 260,100,100,10113 Preader

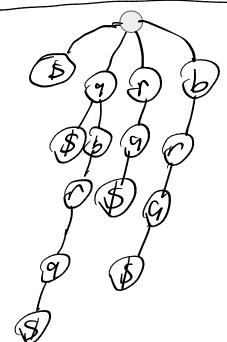
(Suffix Tries)

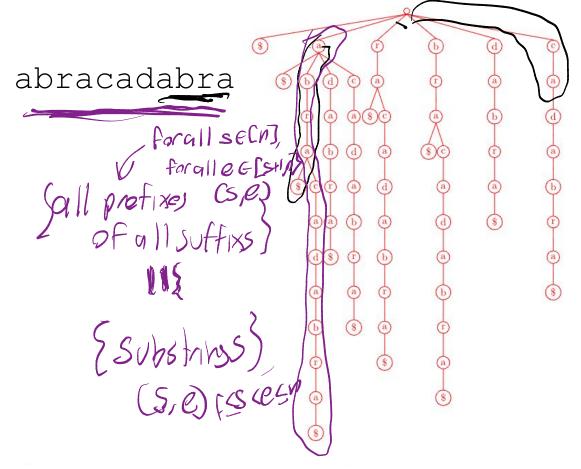
- (1) Draw the suffix tree for the string s = abracadabra.
- (2) What is the longest substring that appears more than once in the string s = abracadabra?
- (3) How can we generally find the longest substring appearing more than once given a suffix trie?

Drawing a suffix tree:

- List out the suffixes, $S = \{\alpha, ru, bra, abra, ...\}$
- Use S to populate the trie

S = {\$,a,ra,bra,abra,dabra,adabra,adabra,cadabra,acadabra,racadabra,bracadabra,abracadabra}





- (2) What is the longest substring that appears more than once in the string s = abracadabra?
- (3) How can we generally find the longest substring appearing more than once given a suffix trie?

Question 3

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based upon forward pattern matching, in which a failure function (also named as "suffix function") is calculated to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically, for a pattern P, its corresponding failure function $F_P(j)$, or F(j) for short, is defined as

$$F(j) := \max_k \left\{ k \leq j-1 : P[0:k] = P[j-k:j] \right\}.$$

In other words, F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j]. In brief, the KMP algorithm can be described as: When a mismatch occurs at T[i], if you are

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

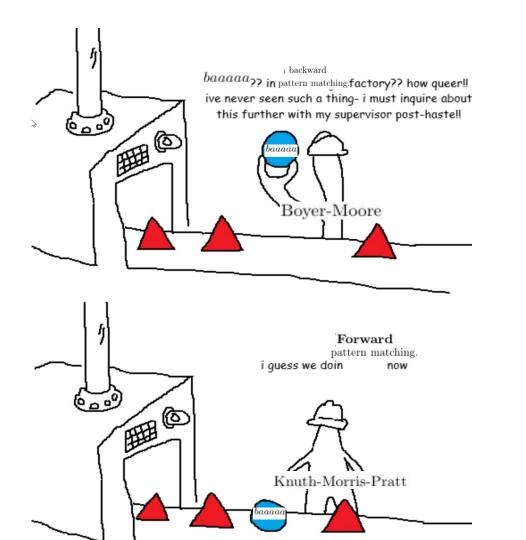
Answer the following questions:

(1) Apply the KMP algorithm to the Boyer-Moore pattern matching problem in previous PSO, where

Т	а	а	а	а	а	а	а	а	а
P	b	а	а	а	а	a			
	1.5		\sim			10			

Boyer Moore did 24 comparisons (worse than forward brute force)!

forward 6 computions



F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

Failure function

f(j) 1 2 3 4 5 6 7

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

Failure function

j	1	2	3	4	5	6	7
f(j)							

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

Failure function

j 1 2 3 4 5 6 7 f(j) 0

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

Failure function

j 1 2 3 4 5 6 7
f(j) 0 0

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

Failure function

j	1	2	3	4	5	6	7
f(j)	0	0	0	0	0	0	0

Why all 0s?

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

_	(0=1)									
j	1	2	3	4	5	6	7			
f(j)	0									

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1					

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1	2				

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0			

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0			

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	

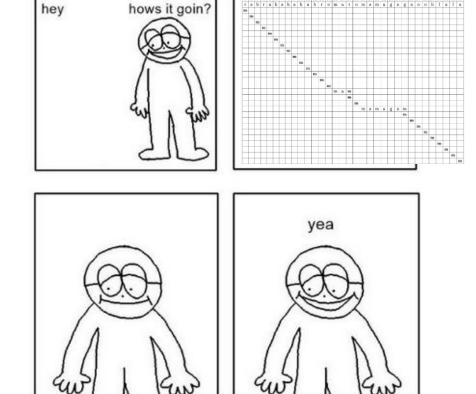
F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].
- (3) Let T := "rahrahahahahromaromamagagaoohlala", run the KMP pattern matching algorithm for the pattern P in (2).

This example is a bit long..



0

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamagama"

2 3 4 5 6 7

0

0

2

2

_	(i = 0))											
Т	r	а	h	m	а	m	а	m	а	m	а	m	а
P	m	а	m	а	g	а	m	а					

f(j)

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamagama"								
	J	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

		(i = 1)											
Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Р		m	а	m	а	g	а	m	а				
	(V=0,)										<u> </u>

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let I = "ranmamamamagama"	_							
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

(i = 2))			

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Р			m	а	m	а	g	а	m	а			

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
 currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamagama"

	P[f(3)]=P[2]												
j	1	2	3	4	5	6	7						
f(j)	0	1	(2)	0	0	1	2						

				(i = 3	>		((j=7)				
Т	r	а	h	m	а	m	a	m	а	m	а	m	а
P				m	а	m	a	g	а	m	а		
								(J=4)				

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let I = "ranmamamamagama"								
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

(i = 7)

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
P				m	а	m	а	g	а	m	а		

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamagama"

anmamamagama	_							
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

(j = 4)

Mismatch at P[4]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let I = "ranmamamamagama"								
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
P				m	а	m	а	g	а	m	а		

Mismatch at P[4], align P[2] with T[7]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
 - currently at P[0], then shift P[0] to align with T[i+1].

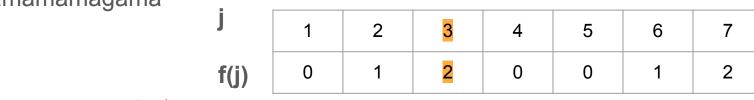
Let T = "rahmamamamagama"								
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
P						m	а	m	а	g	а	m	а
				m	а	m	а	g	а	m	а		

Mismatch at P[4], align P[2] with T[7] Why?

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamagama"



Т	r	а	h	m	a	m 1	a	m	а	m	а	m	а
P			(m	a	m	a	g	а	m	а		

Mismatch at P[4], align P[2] with T[7] Why? (f(3) says these are equal

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
 - currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamamagama"								
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	a	m	a	m	а	m	а	m	а
P				m	а	m	а	g	а	m	а		

Mismatch at P[4], align P[2] with T[7] Why?

Mismatch at P[4] → No mismatch before P[4]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
 - currently at P[0], then shift P[0] to align with T[i+1].

Let T = "rahmamamamagama"								
	j	1	2	3	4	5	6	7
	f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
P					-	m	а	m	а	g	а	m	а
				m	а	m	а	g	а	m	а		

Mismatch at P[4], align P[2] with T[7] Why? No mismatch before $P[4] \rightarrow I$ can move pattern two spaces