PSO 1

Introductions

← YOUR PSO GTA (Justin)

Some other things about this PSO (and me)

- Usually on slides
- I try to cover everything
- Raise your hand whenever
- 3-time 251 TA, 10-time overall TA

I upload my slides on my website! <u>justin-zhang.com/teaching/CS251</u>

Let c be the cost of calling the function WORK. That is, the cost of the function is constant, regardless of the input value. Determine the respective closed-form T(n) for the cost of calling WORK.

```
1: function A1(n : \mathbb{Z}^+)
2: val \leftarrow 0
3: for i from 1 to n by multiplying by 3 do
4: for j from i to i^2 do
5: val \leftarrow val + \text{WORK}(n)
6: end for
7: end for
8: return val
9: end function
```

What is this question asking?

Let c be the cost of calling the function WORK. That is, the cost of the function is constant, regardless of the input value. Determine the respective closed-form T(n) for the cost of calling WORK.

```
1: function A1(n : \mathbb{Z}^+)

2: val \leftarrow 0

3: for i from 1 to n by multiplying by 3 do

4: for j from i to i^2 do

5: val \leftarrow val + \text{WORK}(n)

6: end for

7: end for

8: return val

9: end function
```

What is this question asking? Determine the respective closed-form T(n) for the cost of calling Work.

What is this question **NOT** asking?

Something with a \sum or \prod in it

An asymptotic answer

```
1: function A1(n : \mathbb{Z}^+)

2: val \leftarrow 0

3: for i from 1 to n by multiplying by 3 do

4: for j from i to i^2 do

5: val \leftarrow val + Work(n)

6: end for

7: end for

8: return val

9: end function (Let c be the cost of calling Work)
```

1. Write out the general form of T(n).


```
1: function A1(n : \mathbb{Z}^+)

2: val \leftarrow 0

3: for i from 1 to n by multiplying by 3 do (Let c be the cost of calling Work)

4: for j from i to i^2 do

5: val \leftarrow val + \text{WORK}(n)

6: end for

7: end for

8: return val

9: end function
```

1. Write out the general form of T(n).

2. Write out the values of i and j as the loop iterates

```
1: function A1(n: Z<sup>+</sup>)
2: val ← 0
3: for i from 1 to n by multiplying by 3 do (Let c be the cost of calling Work)
4: for j from i to i² do
5: val ← val + Work(n)
6: end for
7: end for
8: return val
9: end function

How to derive T(n) when there are weird loops that are posted
```

1. Write out the general form of T(n).

i	1	3	9	 n
J (i to i²)	1 to 1	3 to 9	9 to 81	n to n ²

- 2. Write out the values of i and j as the loop iterates
- 3. Plug in the start and ending values for i and j

```
1: function A1(n : \mathbb{Z}^+)
2: val \leftarrow 0
3: for i from 1 to n by multiplying by 3 do
4: for j from i to i^2 do
5: val \leftarrow val + \text{Work}(n)
6: end for
7: end for
8: return val
9: end function
(Let c be the cost of calling Work)
```

1. Write out the general form of T(n).

i	1	3	9	•••	n
J (i to i²)	1 to 1	3 to 9	9 to 81		n to n ²

- 2. Write out the values of i and j as the loop iterates
- 3. Plug in the start and ending values for i and j Problem: summations don't "multiply by 3"

```
1: function A1(n : \mathbb{Z}^+)

2: val \leftarrow 0

3: for i from 1 to n by multiplying by 3 do

4: for j from i to i^2 do

5: val \leftarrow val + WORK(n)

6: end for

7: end for

8: return val

9: end function
```

Problem: summations don't "multiply by 3" Solution: introduce a new variable k that iterates 'normally'

k	0	1	2	 ?
i	1	3	9	 n
j (i to i²)	1 to 1	3 to 9	9 to 81	n to n ²

Next step: write i in terms of k

```
    function A1(n: Z<sup>+</sup>)
    val ← 0
    for i from 1 to n by multiplying by 3 do
    for j from i to i² do
    val ← val + WORK(n)
    end for
    end for
    return val
    end function
```

Problem: summations don't "multiply by 3" Solution: introduce a new variable k that iterates 'normally'

k	0	1	2		log ₃ n
i	3 ⁰	3 ¹	3 ²	•••	3 ^k
j	1 to 1	3 to 9	9 to 81		n to n ²

Now write j in terms of k

```
1: function A1(n: Z<sup>+</sup>)
2: val ← 0
3: for i from 1 to n by multiplying by 3 do
4: for j from i to i<sup>2</sup> do
5: val ← val + WORK(n)
6: end for
7: end for
8: return val
9: end function
```

Problem: summations don't "multiply by 3"
Solution: introduce a new variable k that iterates 'normally'

k	0	1	2	 log ₃ n
i	3 ⁰	3 ¹	3 ²	 3 ^k
j	3º to 3º	3 ¹ to 3 ²	3 ² to 3 ⁴	3 ^k to 3 ^{2k}

The corresponding sum is then..

```
    function A1(n: Z<sup>+</sup>)
    val ← 0
    for i from 1 to n by multiplying by 3 do
    for j from i to i² do
    val ← val + WORK(n)
    end for
    end for
    return val
    end function
```

Problem: summations don't "multiply by 3"
Solution: introduce a new variable k that iterates 'normally'

k	0	1	2		log ₃ n
i	30	3 ¹	3 ²	•••	3 ^k
j	3º to 3º	3 ¹ to 3 ²	32 to 34		3 ^k to 3 ^{2k}

The corresponding sum is then..

Last Steps: Solve the Sum (Carefully!!)

Pro technique:

Last Steps: Solve the Sum (Carefully!!)

$$\begin{array}{c|c}
 & 2k \\
\hline
 & 3 \\
\hline
 & 5 \\
\hline$$

Pro technique: Left as an exercise to the reader

Derive the closed-form T(n) for the value returned by the following algorithm:

```
1: function A2(n : \mathbb{Z}^+)

2: sum \leftarrow 0

3: for i from 0 to n^4 - 1 do

4: for j from i to n^3 - 1 do

5: sum \leftarrow sum + 1

6: end for

7: end for

8: return sum

9: end function
```

Let's follow the same steps

- 1. Write out the general form of T(n).
- 2. Write out the values of i and j as the loop iterates

Derive the closed-form T(n) for the value returned by the following algorithm:

```
1: function A2(n : \mathbb{Z}^+)

2: sum \leftarrow 0

3: for i from 0 to n^4 - 1 do

4: for j from i to n^3 - 1 do

5: sum \leftarrow sum + 1

6: end for

7: end for

8: return sum

9: end function
```

- 1. Write out the general form of T(n).
- 2. Write out the values of i and j as the loop iterates

Simple! (Fishy..)

Derive the closed-form T(n) for the value returned by the following algorithm:

```
1: function A2(n : \mathbb{Z}^+)

2: sum \leftarrow 0

3: for i from 0 to n^4 - 1 do

4: for j from i to n^3 - 1 do

5: sum \leftarrow sum + 1

6: end for

7: end for

8: return sum

9: end function
```

- 1. Write out the general form of T(n).
- 2. Write out the values of i and j as the loop iterates

When $i > n^3-1$, inner loop does not run so this sum is wrong!

Simple! (Fishy...)

Question 2

Derive the closed-form T(n) for the value returned by the following algorithm:

```
1: function A2(n : \mathbb{Z}^+)

2: sum \leftarrow 0

3: for i from 0 to n^4 - 1 do

4: for j from i to n^3 - 1 do

5: sum \leftarrow sum + 1

6: end for

7: end for

8: return sum

9: end function
```

- 1. Write out the general form of T(n).
- 2. Write out the values of i and j as the loop iterates

The right sum

Last Steps: Solve the Sum (Carefully!!)

- (a) The following statements are true or false?
 - 1. $n^2 \in \mathcal{O}(5^{\log n})$
 - 2. $\frac{\log n}{\log \log n} \in \mathcal{O}(\sqrt{\log n})$
 - 3. $n^{\log n} \in \Omega(n!)$
- (b) Sort the following functions in increasing order of asymptotic (big-O) complexity:

$$f_1(n) = n^{\sqrt{n}}, \quad f_2(n) = 2^n, \quad f_3(n) = n^{10} \cdot 2^{n/2}, \quad f_4(n) = \binom{n}{2}$$

What does f(n) = O(g(n)) mean (in words)?

- (a) The following statements are true or false?
 - 1. $n^2 \in \mathcal{O}(5^{\log n})$
 - 2. $\frac{\log n}{\log \log n} \in \mathcal{O}(\sqrt{\log n})$
 - 3. $n^{\log n} \in \Omega(n!)$
- (b) Sort the following functions in increasing order of asymptotic (big-O) complexity:

$$f_1(n) = n^{\sqrt{n}}, \quad f_2(n) = 2^n, \quad f_3(n) = n^{10} \cdot 2^{n/2}, \quad f_4(n) = \binom{n}{2}$$

What does f(n) = O(g(n)) mean (in words)? f(n) is upper-bounded by g(n), asymptotically What does f(n) = O(g(n)) actually mean?

- (a) The following statements are true or false?
 - 1. $n^2 \in \mathcal{O}(5^{\log n})$
 - 2. $\frac{\log n}{\log \log n} \in \mathcal{O}(\sqrt{\log n})$
 - 3. $n^{\log n} \in \Omega(n!)$
- (b) Sort the following functions in increasing order of asymptotic (big-O) complexity:

$$f_1(n) = n^{\sqrt{n}}, \quad f_2(n) = 2^n, \quad f_3(n) = n^{10} \cdot 2^{n/2}, \quad f_4(n) = \binom{n}{2}$$

What does f(n) = O(g(n)) mean (in words)? f(n) is upper-bounded by g(n), asymptotically

What does f(n) = O(g(n)) actually mean?

There	exists constants C70, no GIN such that	
	$cf(n) \leq g(n)$	
for a	1 n ≥ n.	

(a) The following statements are true or false?

1.
$$n^2 \in \mathcal{O}(5^{\log n})$$

(Suppose log is base 2)

(For general log base b, this is only true when..)

(a) The following statements are true or false?

2.
$$\frac{\log n}{\log \log n} \in \mathcal{O}(\sqrt{\log n})$$

(a) The following statements are true or false?

3.
$$n^{\log n} \in \Omega(n!)$$

What does f(n) = O(g(n)) mean (in words)? f(n) is upper-bounded by g(n), asymptotically

What does f(n) = O(g(n)) actually mean?

There exists constants
$$c>0$$
, $n_0 \in \mathbb{N}$ such that $cf(n) \leq g(n)$ for all $n \geq n_0$

Now...

What does $f(n) = \Omega(g(n))$ mean (in words)?

What does $f(n) = \Omega(g(n))$ actually mean?

3.
$$n^{\log n} \in \Omega(n!)$$

(b) Sort the following functions in increasing order of asymptotic (big-O) complexity: $f_1(n) = n^{\sqrt{n}}, \quad f_2(n) = 2^n, \quad f_3(n) = n^{10} \cdot 2^{n/2}, \quad f_4(n) = \binom{n}{2}$

Intuition: Exponentials dominate

Any clear relationships?

- (a) Show that $\max\{f(n), g(n)\} \in \Theta(f(n) + g(n))$ for any f(n) and g(n) that eventually become and stay positive.
- (b) Give an example of f and g such that f is not O(g) and g is also not O(f).

 $f(n) = \Theta(g(n))$ is defined as f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ (simultaneously) i.e.

There exists constants C70, no GIN such that		There exists constants C'70, 1, GIN such that
$cf(n) \leq g(n)$	AMD	c'f(n) Zg(n)
for all n 2 no	/ 11 1	for all n 2n

We can rewrite this as..

(a) Show that $\max\{f(n),g(n)\}\in\Theta(f(n)+g(n))$ for any f(n) and g(n) that eventually become and stay positive.

To convince ourselves, let's look at f(n) = n and g(n) = log n

	1	l		
_				
		1		

(a) Show that $\max\{f(n), g(n)\} \in \Theta(f(n) + g(n))$ for any f(n) and g(n) that eventually become and stay positive.

Ex. f(n) = n and g(n) = log n

Prove formally using definition

1. max(f,g) = O(f + g)

2. $max(f,g) = \Omega(f + g)$

(b) Give an example of f and g such that f is not O(g) and g is also not O(f).

Idea: crazy oscillating behavior