PSO 4

Tree Queue Heap

justin-zhang.com/teaching/CS251

Project 1 due next week

- See ed for updates

Hw 2 grades out by Friday

Binary Trees

What is a full tree? .
- euth mwlp (s
- u)gaf

(o podg) v Z CillE

What is a complete tree?
. Qg level exceplh lewd ST

) Q 0609
00,0

@
| know this because | touch

Actually that “tree” is upside
down. It should look like

(Binary Tree)
(1) A full binary tree cannot have which of the following number of nodes?

3
7
11
12

15

moa®x>

(Binary Tree)

(1) A full binary tree cannot have which of the following number of nodes?

™. 3
B. 7
é i;_ eun B examples
E. 15
o
o
Definition of a full binary tree 3 ﬂ
Every node is either a
- leaf or, ==
- inner node with two children >> g >

>

\5— What is the answer?

(2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have?
—
3

A
B
C.
D
E

-1 & O =

How to proceed?

(2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have?

How to proceed?

Every answer is at most 7.. Just draw them all out!

WRE 4

(2) Given the number of nodes n = 7, how many distinct shapes can a full binary tree have?

A
B.
C

D.
E.

-1 & O =

How to proceed?

Every answer is at most 7.. Just draw them all out!

) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree.

@
\ 54 }7 : I
o db ﬁ@fg 1

E xeuse' fove 15 Baes = B Inbmal ¢ |
f \
(A | by Frees.

Thoughts’?

(3) The number of leaf nodes is always greater than the number of internal nodes in a full binary tree.

A. True
B. False

If the thought isn’t a strong ‘yes’ then draw examples

(4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary
tree.

A. True
B. False

Definition of a complete binary tree?

(4) The number of leaf nodes is always greater than the number of internal nodes in a complete binary

tree.

A. True

@ False

Definition of a complete binary tree?

- Every level of the tree except the last is complete
- Last level is left-leaning

11 17
cc & 2

5) Given the number of nodes in a full binary tree, the number of its leaf nodes is determined.
A)) True

B. False ﬂ =

(Stack and Queue)

Design a stack using two queues satisfying the following requirements ﬂd h

1. Pushing an element to the stack takes no more than O(1) operations. Fap I/ot P
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure. P o P

pop/locH)

Assume Queue interface

- g = Queue.init ()
- q.eng(x)

- x = g.deq()
- g.size ()

—

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface
Implement Stack interface

- g = Queue.init () - s = Stack.init ()
————

- g.enqg(x) - S.Bgﬁh(x)

- x = g.deq() - X = s.pop()

- g.size ()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface def Stack.init ():

- g = Queue.init()
- g.eng(x)

- x = g.deq()

- g.size()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface

- g = Queue.init ()
- g.enqg(x)

- x = g.deqg()

- g.size()

def Stack.init () :
qi = Queue.init ()
g2 = Queue.init ()

(Stack and Queue)

Design a stack using two queues satisfying the following requirements

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

Assume Queue interface

- g = Queue.init ()
- g.enqg(x)
- x = g.deqg()
- dg.size() General Strat for these types of problems
- Fulfill conditions incrementally,
def Stack.init () : - When things break, fix them.
gl = Queue.init () - Occam’s razor

g2 = Queue.init ()

Example: Starting with the Simplest Push Impl.

1. Pushing an element to the stack takes no more than O(1) operations.

Push

Push
Push

A~ N N~
O O T v

N N N’ N

Push

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)

Push(b)

Push(c)
Push(d)

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)

Push(b)

Push(c)
Push(d)

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)
Push(b)
Push(c)
Push(d)

bc

Example

1. Pushing an element to the stack takes no more than O(1) operations.

Push(a)
Push(b)
Push(c)
Push(d)

bcd

Adding a Pop: Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop? (use deq?)

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

Push, Pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b) O O

Pop() #should pop b
Push(c)
Pop() # should pop ¢

~_]

T

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c)

Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)
Pop() #should pop b

Push(c) a

Pop() # should pop ¢

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a) °

Push(b)
Pop() #should pop b

Push(c) b

Pop() # should pop ¢
Y. dog (/) dawewses A %
Y. enq)

ow to i ment this?

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)

Pop() #should pop b

Push(c) lﬂ
Pop() # should pop ¢ |

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)

Push(b)

Pop() #should pop b
Push(c)
Pop() # should pop ¢

\o
!

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

alb
Push(a)
Push(b)
Pop() #should pop b
Push(c) bl
Pop() # should pop ¢

Pop():
If g2.size() > 0O:
Return g2.deq()

—

Pushing after a pop?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

Push(a)
Push(b)
Pop() #should pop b
Rush(c)
Pop() # should pop ¢

Pop():

If g2.size() > 0O:
Return g2.deq()

Pushing after a pop? Only pop if non-empty

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

q1
Push(a) abe
Push(b)
Pop() #should pop b
Push(c) ¢
Pop() # should pop ¢
g2

Push(x):
g1.enq(x)
if q2.size > 0: g2.deq()
g2.enq(x)

():
If g2.size() > 0O:
Return g2.deq()

|dea: use g2 to store “last element”

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

q1
Push(a) abe
Push(b)
Pop() #should pop b
Push(c)
Pop() # should pop c
g2

Not exactly a stack, but...
this stack impl is “correct” for the first two rules!

Last requirement

2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where

. Pushing an element to the stack takes no more than O(1) operations.

n is the number of elements in the data structure.

Push(b

Push(d
Pop() #

)
)
Push(c)
)

should pop d

)
Pop() # should pop ¢ 1HIAN)

Try our implementation as-is

Last requirement

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd

Push(a)

Push(b)

Push(c)
Push(d) d

Pop() #should pop d
Pop() # should po

Push(x):

g1.enq(x)
if q2.size > 0: g2.deq()

g2.enq(x)

Last requirement

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd
Push(a

Push(c
Push(d)

(a)
Push(b)
(c)

Pop() #should pop d
Pop() # should pop ¢

Pop():
If q2.size() > O:
Return q2.deq()

Last requirement: How do we get ¢?

Pushing an element to the stack takes no more than O(1) operations.

Popping from the stack takes no more than O(1) operations if performed after a push.

w o=

Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

ql

abcd

Push(a) 2

Push(b) ~ $ton

iyt Gy, emnty 6ot |0if elment G hterc iop
Push(d) Whea pop
Pop() #should pop d
Pop() # should pop c//g[,,)

.If q2.size() > O:
Return g2.pop()

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop, where
n is the number of elements in the data structure.

abcd

Pop() #should pop d
Pop() # should pop c

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push

3. Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

Pop() #should pop d
Pop() # should pop c

while q1.size > 0:
seen = q1.pop()
g2.enq(seen)
#how to get c?

abcd

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

W N =

Pop() #should pop d
Pop() # should pop c

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another p
n is the number of elements in the data structure.

while g1.size > O:

res = seen
/...
else:

seen = q1.pop()
If q1.size() == 1:

g2.enq(seen)

Wwivn oy C
q/tl.S)Z& :i

abcd

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

while q1.size > 0O:
seen = q1.pop()

If q1.size() == 1: y

1. Pushing an element to the stack takes no more than O(1) operations. res = seen
2. Popping from the stack takes no more than O(1) operations if performed after a push. | /...

else:
3. Popping from the stack takes no more than O(n) operations if performed after another p S 2.enq(seen)

n is the number of elements in the data structure. q<-eng
BN
bjcd
Push(a)
Push(b)
Push(c)
Push (d) a
Pop() #should pop d
Pop() # should pop c g2
seen = a

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.
2. Popping from the stack takes no more than O(1) operations if performed after a push

3. Popping from the stack takes no more than O(n) operations if performed after another pops
n is the number of elements in the data structure.

Pop() #should pop d
Pop() # should pop c

while q1.size > 0O:

res = seen
/...
else:

seen = q1.pop()
If q1.size() == 1:

g2.enq(seen)

T ey

|ldea: Deque everything from g1 into g2
Keep track of elements seen to get c

g2

Last requirement: How do we get ¢?

W N =

n is the number of elements in the data structure.

Pop() #should pop d
Pop() # should pop c

Y ubc
Vo _

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push

Popping from the stack takes no more than O(n) operations if performed after another pops

while g1.size > O:
seen = q1.pop()
Ifq1.size() == 1:
res = seen
else:
g2.enq(seen)

abc

[seen=c¢c,res=c¢ }

Ok we got ¢, but the queues are messy!
How can we bring it back to prior state?

Last requirement: How do we get ¢?

W N -

n is the number of elements in the data structure.

Pop() #should pop d
Pop() # should pop c

fopl) Hshald sef b

v/

Pushing an element to the stack takes no more than O(1) operations.
Popping from the stack takes no more than O(1) operations if performed after a push.

Popping from the stack takes no more than O(n) operations if performed after another pop;

while g1.size > 0:

seen = q1.pop()

If q1.size() == 1:
res = seen
q2.enq(seen)

q1 = g2, reinit g2
else:
g2.enq(seen)

— o

|

seen=c¢c,res=c¢ }

Ok we got ¢, but the queues are messy!
How can we bring it back to prior state?

Last requirement: How do we get ¢?

1. Pushing an element to the stack takes no more than O(1) operations.

2. Popping from the stack takes no more than O(1) operations if performed after a push.

3. Popping from the stack takes no more than O(n) operations if performed after another pop;

n is the number of elements in the data structure.

Push(a)
Push(b)
Push(c)
Push(d)
Pop() #should pop d
Pop() # should pop ¢
Pop() # should be b

while g1.size > 0:

seen = q1.pop()

If q1.size() == 1:
res = seen
q2.enq(seen)

q1 = g2, reinit g2

g2.enq(seen)

bc

|

seen=_,res = _

|

g2

Now if we pop again, the queues are in the correct state!

How do we show this always works?

Philosophy of Data Structures: Culling Chaos

Sure fire design philosophy of data structures is maintaining Invariants
If | can make sure my data structures always look the same then easy to...

- Satisfy time efficiencies
- Write elegant pseudocode
- Prove/guarantee your impl. is efficient/correct

Example?

Invariant for our stack? After pop pop

a1l
we want..
abc
g2
[seen =cC]
Push(x): PushPop():
g1.enq(x) If g2.size() > 0:
if q2.size > 0: q2.deq() Return q2.pop()

g2.enq(x)
N

Invariant for our stack? After pop pop

S

a1l q1
d bc
we want..
abc
> 42
seen = ¢ PopPop():
/I code for getting pop element
Push(x): // TODO: code for fixing stack

q1.enq(x) J:

if g2.size > 0: zruos g2.pop()

g2.enq(x)

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. g2.enq(seen)
if q2.size > 0: ziuos
g2.enq(x)

Invariant for our stack? After pop pop

a1l
we want..
abc
>
_ PopPop():
[seen=¢ /I code for getting pop element
1. qg1.deq()

Push(x): 2. Setql=q2
q1.enq(x) 3. qg2.enq(seen))
if g2.size > 0: qzruos g2.pop()
g2.enq(x)

S

Invariant for our stack? After pop pop

q1

S

bc

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. ql.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. g2.enq(seen)
if q2.size > 0: ziuos
g2.enq(x)

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=qg2

q1.enq(x) 3. g2.enq(seen)

if q2.size > 0: ziuos

g2.enq(x)

Invariant for our stack? After pop pop

q1

bc

S

——

g2.pop()

q1
d
we want..
abc
- PopPop():
Seen = ¢ /I code for getting pop element
1. qg1.deq()
Push(x): 2. Setql1=92
q1.enq(x) 3. q2.enq(seen)
if q2.size > 0: ziuos
g2.enq(x)

We don’t have to change our previous push/pop impl.!

a1l
albc
c
g2
[seen=c]
Push(x): PushPop():
g1.enq(x) If g2.size() > 0:
if g2.size > 0: g2.deq() Return q2.pop()

g2.enq(x)
N

Binary Heaps

C‘C/)/q/gj

Max-heap (aka Max Priority Queue) if

the key in each node is larger than or
equal to the keys in that node’s two
children (if any).

Min-heap (aka Min Priority Queue) if
the key in each node is less than or
equal to the keys in that node’s two
children (if any).

Binary Heaps as Arrays

leftchild(i € Zy,) :=2i+1 = 2
— -

rightchild(i € Z,,) := 2i + 2

i—1
parent(i € Z%) := lT

AT

(Binary heap)

Question 3

(1) If the binary heap is represented as an array, and the root is stored at index 0, where is the left child

of the node at index 7 = 23 stored?

m o awe»

45
46
47
48
49

General formula for this?

Question 3
(Binary heap)

(1) If the binary heap is represented as an array, and the root is stored at index 0, where is the left child
of the node at index ¢ = 23 stored?

A. 45
B. 46
ﬁ A7 :
Binary Heap Cheatsheet
D. 48 left(i) = 2i + 1

E. 49 right(i) = 2i + 2

(2) If the binary heap is represented as an array, and the root is stored at index 0, where is the parent
of the node at index i = 99 stored?

Y ow e
M=
\'

Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

(2) If the binary heap is represented as an array, and the root is stored at index 0, where is the parent
of the node at index ¢ = 99 stored?

A. 45
B. 46
C. 47
D. 48
@ 49 Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

parent(l) =L(i-1)/2]

°L%»/‘l

(3) If the binary heap is represented as an array of length n = 99, and the root is stored at index 0,
: o . . i . < e 9 ~
where is the last non-leaf node stored
/\
A. 45

B. 46
C. 47
D. 48

E. 49 Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

é parent(i) = L(i - 1) / 2.

(3) If the binary heap is represented as an array of length n = 99, and the root is stored at index 0,
where is the last non-leaf node stored?

A. 45
B. 46
C. 47
(D18
E. 49 Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

parent(i) = L(i- 1)/ 2]
lastNonLeaf() = L(n/2)- 11

4.5

General intuition: There are ~n/2
leaves since these are complete trees

(4) If the binary heap is represented as an array of length n = 99, and you want to insert an element,
how many different locations of the element are possible after insertion?
—

A5

: Binary Heap Cheatsheet
| can left(i) = 2i + 1
/\ﬂSE/'/’ right(i) = 2i + 2

parent(i) = L(i- 1)/ 2]

%i an éi ‘IC")" g, lastNonLeaf() = L(n/2) - 11

O

(4) If the binary heap is represented as an array of length n = 99, and you want to insert an element,
: anv different locations of the element are possible after insertion?

v Y
- ._,(*) H’\ D V4 Binarﬁel:t?i?gihfitsheet

right(i) = 2i + 2
parent(i) = L(i- 1)/ 2]
lastNonLeaf() = L(n/2)- 11
height() = Lig nl

> ——_ 4

—

