
PSO 5
Sorting



Announcements

Project deadline extended to this Saturday

GL on 250 exam 





Heap Insertion

1. Insert at next leaf
2. Sift up

Demonstration: insert(9)



(Max) Heapify: Turning your arrays into Heaps

For each non-leaf node from the last to the first:

while it is less than its largest child:

swap it downward

Demonstr. : Heapify [4 6 3 5 7 1]



Heap Sort

Idea: In a max heap, the max element is always at the root, sort backwards, from largest to smallest

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4
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And so forth



Heap Summary Costs

For a heap with 🎺 items,

Heapify: O(🎺)

Add/Pop: O(log 🎺)

Heap Sort: O(🎺log 🎺)





Just run merge sort on the combined array



Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Can I use a heap somehow?



Idea: index-wise heap sorting

Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

This is a heap (as seen in the wild)



Idea: index-wise heap sorting

Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

1
2
9

1. Add first index elements to heap



Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

2
9

1. Add first index elements to heap
2. Pop heap and append to res array

res = 1



Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7
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Iteratively sort and add items to the heap

       2
3
4
9
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1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1



Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

       2
3
4
9

10

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1

Problem
Heap size at most N

Overall will be O(NlogN)



Why will the heap has size O(n)?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

         3
4
5
5
9

10
11

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1

Problem
Heap size at most 

N
Overall will be 

O(NlogN)



Why will the heap has size O(n)?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

         4
5
5
5
7
9

10
11
12

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1

Problem
Heap size at most 

N
Overall will be 

O(NlogN)

(12 - 3) = 9 elts

In general:
Will have <= (n-k) elts in 
heap

Can we limit to just k?



Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

2
9

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

res = 1
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Iteratively sort and add items to the heap

3
9

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

res = 1 2



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

3
4
9

res = 1 2



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

3
4
9

res = 1 2

Okay.. but how do we know:
1. which array the popped element 

belongs to?
2. Its index in the array



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the array number and the index!

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap of the form
x,array #,index

3,0,0
4,1,1
9,2,0

res = 1 2

0

1

2



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
4,1,1
9,2,0 

res = 1 2 3

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
4,1,1
5,0,2
9,2,0

res = 1 2 3

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,1,2
5,0,2
9,2,0

res = 1 2 3 4

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12 5,0,2
9,2,0

res = 1 2 3 4 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,1,3
5,0,2
9,2,0

res = 1 2 3 4 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4 5 5

0

1

2

Keep sorting the remaining arrays



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
7,0,3
9,2,0

res = 1 2 3 4 5 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5 7

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5 7

0

1

2

Add everything left from last array to res



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Time complexity?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

res = 1 2 3 4 5 5 5 7 9 10 11 12

0

1

2

Add everything left from last array to res



1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
       Only add next index element from popped array

Time complexity?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

res = 1 2 3 4 5 5 5 7 9 10 11 12

0

1

2

Add everything left from last array to resN add/pop heap operations on a heap of size K

O(NlogK) cost







Whenever you see 
1. Array is sorted
2. O(log n) time required
99%* of the time, you can use a modified binary search

* Source: It was revealed to me in a dream



Example of Binary Search for x = 5

1 2 3 4 5 6 7 8

def binarySearch(A[1:n],x):
l = 1, r = n
while l <= r:

m = ⌊(l + r) / 2⌋
if A[m] == x:

return m 
elif A[m] < x:

l = m + 1
else: 

r = m - 1
return -1 
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Example of Binary Search for x = 5

1 2 3 4 5 6 7 8

def binarySearch(A[1:n],x):
l = 1, r = n
while l <= r:

m = ⌊(l + r) / 2⌋
if A[m] == x:

return m 
elif A[m] < x:

l = m + 1
else: 

r = m - 1
return -1 

L RM

First iteration done.
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def binarySearch(A[1:n],x):
l = 1, r = n
while l <= r:

m = ⌊(l + r) / 2⌋
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l = m + 1
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Example of Binary Search for x = 5

1 2 3 4 5 6 7 8

def binarySearch(A[1:n],x):
l = 1, r = n
while l <= r:

m = ⌊(l + r) / 2⌋
if A[m] == x:

return m 
elif A[m] < x:

l = m + 1
else: 

r = m - 1
return -1 

L R M

Since L = R, we found x!



Important parts of Binary Search



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

What should the search range be?



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

What should the search range be?

L = 1, R = n, the missing index could be any index

L R



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

When should we stop?
This is often much trickier, run through the algorithm to figure this out.

L R



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

When should we stop?
This is often much trickier to figure out next. 
Instead, run through the binary search to figure out how to interval cut

L RM



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

How should we cut the interval? What does A[m] and B[m] tell us?

L RM



Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

How should we cut the interval?

● A[m] == B[m] → everything before is equal. 
○ The missing element must be in the right half!

L RM
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How should we cut the interval?
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Continue running the algorithm to figure out when to stop

L RM



How should we cut the interval?

● A[m] == B[m] implies that everything before is equal. The missing element 
must be in the right half!

● A[m] != B[m] → something in range [l,m] must be missing. 
○ The missing element must be in the left half!

Continue running the algorithm to figure out when to stop

Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

L RM



This seems like a good place to stop our algorithm. What’s the stop condition?

Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

L R M



This seems like a good place to stop our algorithm. What’s the stop condition?

Our case
1 2 3 4 5 6 7 8

1 2 3 4 6 7 8

L R M

When l == r



Last book keeping

Written slightly cleaner since we are guaranteed to have a missing element

def binarySearch(A[1:n],B[1:n-1]x):
l = 1, r = n
while l < r:

m = ⌊(l + r) / 2⌋
if A[m] = B[m]:

l = m + 1
else: 

r = m - 1
return l 





pivot p is set as last element

Ok… what does this do tho?



2 8 7 1 3 5 6 4

2 1 3 4 7 5 6 8



p: pivot 

j: goes through entire array

i : growing index of L 

2 1 3 4 7 5 6 8

L R



2 8 7 1 3 5 6 4

  l  r

i j

Start of the algorithm

Pivot = 4



2 8 7 1 3 5 6 4

  l  r

i j

A[j] = 2 < 4

Pivot = 4
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A[j] = 2 < 4

Pivot = 4
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Pivot = 4
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  l  r

i

j

A[j] = 8 < 4? No

Pivot = 4
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i

j

Pivot = 4
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  l  r

i

j

Pivot = 4
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  l  r

i

j

A[j] < 4? Nope

Pivot = 4
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i

j

Pivot = 4



2 8 7 1 3 5 6 4

  l  r

i

j

Pivot = 4



2 8 7 1 3 5 6 4

  l  r

i

j

A[j] = 1 < 4

Pivot = 4
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  l  r

i

j

Pivot = 4



2 1 7 8 3 5 6 4

  l  r

i

j

Pivot = 4
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  l  r

i

j

We’ve done two swaps now. Insight?

Pivot = 4
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We’ve done two swaps now. Insight?
Everything up to i is less than the pivot

Pivot = 4
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Pivot = 4
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i
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Pivot = 4
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  l  r

i

j

A[j] = 3 < 4, swap!

Pivot = 4
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j

A[j] = 3 < 4, swap!

Pivot = 4
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  l  r

i

j

A[j] = 3 < 4, swap!

Pivot = 4
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  l  r

i

j

Everything up to i is less than the pivot

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

A[j] = 5 < 4? Nah

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

Pivot = 4
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  l  r

i

j

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j

That was the last for loop iteration

Pivot = 4



2 1 3 8 7 5 6 4

  l  r

i

j



2 1 3 4 7 5 6 8

  l  r

i

j

What did we just do?
Lets rewind a little
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  l  r

i

j

That was the last for loop iteration

Everything up to i is less than the pivot
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i

j

That was the last for loop iteration

Everything up to i is less than the pivot

pivot index = i + 1



2 1 3 8 7 5 6 4

  l  r

i

j

That was the last for loop iteration

Everything up to i is less than the pivot

pivot index = i + 1



2 1 3 4 7 5 6 8

  l  r

i

j

That was the last for loop iteration

Everything up to i is less than the pivot

pivot index = i + 1









Average case of quick sort is close to O(nlogn)

Suppose at each partition, we can guarantee a 999-to-1 split

How does our recurrence cost look like?

T(n) = 
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How about the tree?



Average case of quick sort is close to O(nlogn)

Suppose at each partition, we can guarantee a 999-to-1 split

How does our recurrence cost look like?

T(n) = T(n / 1000) + T(999n / 1000) + cn

How about the tree?
n

n/1000                999n/1000      

n/1000                999n/1000      n/1000                999n/1000      

…………………………………..



Average case of quick sort is close to O(nlogn)

Suppose at each partition, we can guarantee a 999-to-1 split

How does our recurrence cost look like?

T(n) = T(n / 1000) + T(999n / 1000) + cn

How about the tree?
n

n/1000                999n/1000      

n/1000                999n/1000      n/1000                999n/1000      

…………………………………..

Takeaway: any constant 
fraction split is O(n log n)


