PrePSOGeoGussr: Guess the city

PSO®G

DPLLiL et tildtinarionn I

A kA A A

Linear-{Sorts,Hashing} MUl S

Announcements

Hw due this week
Midterm next week

There is a practice exam on Ed

(Counting sort)

(1) Hlustrate the operations of Counting sort on A = [6,0,2,0,1,3,4,6,1,3,2].

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

Step 1: Array C keeps the number of occurrences
for each element in A.

Step 2: Count the occurrences of each itemin A.
Use Ali] as the indices of C.

Step 3: Accumulate the count values in C from
left to right.

Step 4: Use values in C to determine the final
index for each element in A.

Step 5 (optional): Copy the elements from B to
A if they must be in the original array.

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from © to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]

C[A[1]] « C[A[1]] - 1
end for

-{ return B

end algorithm

Initialize our C array

freq 0 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 0 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

f

i
Initialize our C array

freq 0 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

{for' i from @ to n-1 do

C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

f

i
Initialize our C array

freq 0 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

f

Initialize our C array

freq

Ali] = 6

CIA[i]] = C[6]

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

f

i
Initialize our C array

freq 0 0 0 0

Ali] = 6
C[A[i]] = C[6]

C[6] += 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq 0 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A

r for i from @ to n-1 do

(L C[ATI]T « C[A[ZI]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

freq

Ali] =0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end Tor

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

freq

Ali] =0

C[0] += 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end tor

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from © to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end Tor

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq 1 0

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from © to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

freq

Going faster..

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end Tor

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq 2 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

Initialize our C array

freq 2 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1 (
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

Initialize our C array

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

k 0 1 2 3 4 5 6 let n be the size A
for i from @ to n-1 do
freq 2 2 2 2 1 0 2 C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

Next up g

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1

end for

{ return B

end algorithm

freq

C[1] = C[1] + C[0]

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

C[1] = C[1] + C[0] = 2 + 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

C[2] += C[1]

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq

C[2] += C[1] =6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq 2 4 6 2 1

C[2] += C[1] =6

C[i] = # of elements <= i in the sorted array

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1

end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1

end for

{ return B

end algorithm

freq

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1

end for

{ return B

end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

[?et B be an array of size ﬂ

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

(for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

11

Ali] = 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

11

Ali] = 2

ClAlill=6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]l] - 1 (
end for

{ return B

end algorithm

freq

11

Ali] = 2

CIA[i]] = 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]l] - 1 (
end for

{ return B

end algorithm

freq 2 4

11

Ali] = 2
CIA[i]] = 6
BIC[A[]] - 1] = B[5]

algorithm countingsort(A:array, k:Z%)
let C be an array of length k+1
fill C with @s
let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]l] - 1 (
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 1 3 4 6
freq 2 4 8 9 11
2

Ali] = 2
CIAli]] = 6
BIC[AI]] - 1] = B[3]

Set B[5] = A[i] = 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1 (

end for

{ return B

end algorithm

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

k 0 1 2 3 4 5 6 let n be the size A
for i from @ to n-1 do
freq 2 4 6 8 9 9 11 {endcml‘::ﬁr[-i]] « C[A[i]] + 1
for i from 1 to k do
C[i] = # elements less than or equal to i {emfiil e C[4] + C[i-1]

let B be an array of size n

2 {-For‘ i from n-1 to @ by -1 do

BIC[A[i]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

A[I] — 2 _ end for
C[A[|]] — 6 { return B

B[C[A]i]] - 1] = B[5] Set B[5] = A[i] = 2 why? end algorithm

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

k 0 1 2 3 4 5 6 let n be the size A
- for i from @ to n-1 do
freq 2 4 6 8 9 9 11 {endc1[=ﬁr[-i]] « C[A[i]] + 1
for i from 1 to k do
C[i] = # elements less than or equal to i {endciil o ch ekl
B When sorted, elements before B[5] look like.. let B be an array of size n
2 for i -Fr‘orrl n-1 to @ by.—l do
B[C[A[i]] - 1] « A[i]
{ C[A[i]] « C[A[i]] - 1

A[|] - 2 end for
C[A[I]] — 6 { return B

B[C[A]i]] - 1] = B[5] Set B[5] = A[i] = 2 why? end algorithm

0 6
freq 2 11
0 0

Ali] = 2

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1 (
end—for

{ return B

end algorithm

0 6
freq 2 11
0 0

Ali] = 2

CIA[i]] = C[2]

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[1]] - 1] « A[i]

C[A[1]] « C[A[i]] - 1 (
ena Tor

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

0 2 6
freq 2 5 11
0 0 2

Ali] = 2

CIA[i]] = C[2]

C[2] = 1

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[1]] - 1] « A[i]

C[A[1]] « C[A[i]] - 1 (
ena Tor

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

freq 2

11

Ali] = 2

CIA[i]] = C[2]

Cl2] =

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s
let n be the size A
for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1 (
ena Tor

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

|ntUiti0n: We p|aCed the fIrSt 2 dOWﬂ, Only C[2] = C[1] 2 |eft algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

k 0 1 2 3 4 5 6 let n be the size A

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

for i from @ to n-1 do
freq 2 4 5 8 9 9 11 C[A[i]] « C[A[i]] + 1

B let B be an array of size n

2 {-For‘ i from n-1 to @ by -1 do

B[C[A[i]] - 1] « A[i]
C[A[1]] « C[A[i]] - 1 (
ena Tor

Ali] = 2 Cretrn s
CIA[i]] = C[2] C[2] = end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

(return B

end algorithm

k 0 6
freq 2 11
0 0

Ali] = 3

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ BI[C[A[i]] - 1] « A[i]

C[A[i]T « CTATi]T - 1
end for

{ return B

end algorithm

k 0 6
freq 2 11
0 0

Ali] = 3

CIAli]] = C[3] = 8

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[i]T « CTATi]T - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 6
freq 2 11
0 0

Ali] = 3

CIAli]] = C[3] = 8
SetB[8 - 1] = 3

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[i]T « CTATi]T - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 5 6
freq 2 9 11
0 0 3

Ali] = 3

CIAli]] = C[3] = 8
SetB[8 - 1] = 3

why?

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ BI[C[A[i]] - 1] « A[i]

C[A[i]T « CTATi]T - 1
end for

{ return B

end algorithm

k 0 5 6
freq 2 9 11
0 0 3

Ali] = 3

CIAli]] = C[3] = 8
SetB[8 - 1] = 3

why?

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ BI[C[A[i]] - 1] « A[i]

C[A[i]T « CTATi]T - 1
end for

{ return B

end algorithm

k 0 6
freq 2 11
0 0

Ali] = 3

ClA[i]l = C[3]

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[1]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 6
freq 2 11
0 0

Ali] = 3

C[A[i]] = C[3]

C[3] -=

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[1]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

(return B

end algorithm

k 0 3 6
freq 2 7 11
0 0 2 2 3

This should be B[3] from our picture

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 1 2 3 4 3} 6
freq 2 4 5 7 9 9 11
2 3

This should be B[3] from our picture
Ali] =1, C[A[i]] = 4, so true

algorithm countingsort(A:array, k:Z%)
let C be an array of length k+1
fill C with @s
let n be the size A
for i from @ to n-1 do

C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 0 1 2 3 4 3} 6
freq 2 4 5 7 9 9 11
1 2 3

This should be B[3] from our picture
Ali] =1, C[A[i]] = 4, so true

algorithm countingsort(A:array, k:Z%)
let C be an array of length k+1
fill C with @s
let n be the size A
for i from @ to n-1 do

C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

k 3 6
freq 7 11
1 2

This should be B[3] from our picture
Ali] =1, C[A[i]] = 4, so true
Then decrement the count

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n
B[C[A[1]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{-For‘ i from n-1 to @ by -1 do

{ return B

end algorithm

freq

11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

11

C[6] = 11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]T « CTATiIT - 1
end for

{ return B

end algorithm

freq

11

C[6] = 11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]T « CTATiIT - 1
end for

{ return B

end algorithm

k 1 6
freq 3 11
0 1 1 6

C[6] = 11

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]T « CTATiIT - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1
end for

(return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1
end for
for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
B[C[A[1]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ BIC[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for
let B be an array of size n
for i from n-1 to @ by -1 do
B[C[A[i]] - 1] « A[i]
C[A[i]] « C[A[i]l] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

k 6
freq 10
0 6

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

for i from @ to n-1 do
C[A[i]] « C[A[i]] + 1

end for

for i from 1 to k do
C[i] « C[i] + C[i-1]

end for

let B be an array of size n

for i from n-1 to @ by -1 do
{ B[C[A[i]] - 1] « A[i]

C[A[i]] « C[A[i]] - 1
end for

{ return B

end algorithm

freq

Donel!

algorithm countingsort(A:array, k:Z%)

let C be an array of length k+1
fill C with @s

let n be the size A

C[A[i]] « C[A[i]] + 1

for i from @ to n-1 do
end for

for i from 1 to k do
C[i] « C[i] + C[i-1]
end for

let B be an array of size n

BIC[A[1]] - 1] « A[i]
C[A[1i]] « C[A[i]] - 1

{-For‘ i from n-1 to @ by -1 do
end for

{ return B

end algorithm

Question 3

(Counting sort)
(1) Hlustrate the operations of Counting sort on A = [6.0.2.0,1.3.4.6.1.3.2].

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

(Counting sort)
(1) Hlustrate the operations of Counting sort on A = [6.0.2.0.1.3.4.6.1.3.2].

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

Wait! Sounds familiar..

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

A 6 0 2 0 1,3 4 8 1 3 2
The counting array kept track of C[i] = # elements less than or equal to i
Kk 0 1 2 3 4 5 6
freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

elts in range [0,1] = C[1]
=4

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

elts in range [0,2] = C[2]
=6-2 +2=6

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

elts in range [1,2] = C[2] - C[O]
=6-2=4

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4 6 8 9 9 11

elts in range [1,3] =

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4 6 8 9 9 11

elts in range [1,3] = C[3] - C[0]

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4 6 8 9 9 11

elts in range [a,b] = C[b] - C[a - 1]

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4 6 8 9 9 11

elts in range [a,b] = C[b] - C[a - 1]

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

freq 2 4 6 8 9 9 11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4

6 8 9 9
| \\\
2 2 3 3 4

11

(2) Describe an algorithm that, given n integers in the range 0 to k, preprocesses its input and then
answers any query about how many of the n integers fall into a range [a, b] (for some 0 < a < b < k) in
O(1) time. Your algorithm should use ©(n + k) preprocessing time.

The counting array kept track of C[i] = # elements less than or equal to i

k 0 1 2 3 4 5 6

freq 2 4

6 8 9 9
| \\\
2 2 3 3 4

11

Question 2

You are given an array of integers, where different integers may have different numbers of digits, but the
total number of digits over all the integers in the array is n. Show how to sort the array in O(n) time.

What is n here?

12 5 17 13 15 4 100 4

What are the two linear sorts we learn and how do they work

Why not just use radix sort?

12 S

17

13

15

4

100

4

Radix Sort Example

122

Consider the array A = [352,242,311,906, 3#1 |

2S
ZH
>3\

90

2}

¢
\

el

A

o A

o) 3

:7 2 M

\
q

KN G TN

1

3

6

=

\sm

\
2

06
W) ooty 212

33 S 3l

Uz

v

52

o (n+10)

133

352
106

¥ TR % A W R

Sorting in O(n) time

12 5 17 13 15 4 100 4

1. “Bucket” by lengths

100

2. Sort each length bucket

100

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 D 6 fi 8 9 10 11
16 17 28 18 8 31

I (a) Write an order of insertion for these six values such that the state of T is the one displayed above.

(b) Can another msertion order give the same state! Explamn your answer.
(c) What is the load factor of 77 Is there any issue occurring in 7'?

(d) Ilustrate T if the collision management technique used was chaining.

Linear Probing: If collision, check next box

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 D 6 i 8 9 10 11
16 17 28 18 8 31

(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

k h(k) = k mod 12

16

17

28

28

8

31

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 D 6 i 8 9 10 11
16 17 28 18 8 31

(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

k h(k) = k mod 12

16 4 Which ones are in the right place?
17 5

28 4

18 6

8 8

31 7

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 D 6 i 8 9 10 11
16 17 28 18 8 31

(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

k h(k) = k mod 12
16 4 Which ones are in the right place?
17 5 :
Insert 16,17,8 first
28 4
4 5 6 7 8 9 10 |11
18 6 16 | 17 8
8 8
31 7

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 5 6 i 8 9 10 11
16 17 28 18 8 31
(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

k h(k) =k mod 12
16 4 Which ones are in the right place?
17 5 :

Insert 16,17,8 first
28 4

A 5 6 7 8 9 10 i |
18 0 16 | 17 | 28 g
8 8 Next, 28
31 7

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 5 6 i 8 9 10 11
16 17 28 18 8 31
(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

k h(k) =k mod 12
16 4 Which ones are in the right place?
17 5 :

Insert 16,17,8 first
28 4

A 5 6 7 8 9 10 i |
18 0 16 |17 |28 |18 |38
8 8 Next, 28, 18
31 7

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six
values.

0 i 2 3 4 5 6 7 8 9 10 11
16 17 28 18 8 31
(a) Write an order of insertion for these six values such that the state of T" is the one displayed above.
k h(k) =k mod 12
16 4 Which ones are in the right place?
17 5 :
Insert 16,17,8 first
28 4
A 5 6 7 8 9 10 i |
18 0 16 |17 |28 |18 |8 |3l
8 8 Next, 28, 18, 31
31 7

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

values.
0 1 2 3 4 5 6 7 8 9 10 11

16 17 28 18 8 31

a) Write an order of insertion for these six values such that the state of 7" is the one displayed above.

c) What is the load factor of T'? Is there any issue occurring in 77

(

I (b) Can another insertion order give the same state? Explain your answer.
(
(d) Ilustrate T if the collision management technique used was chaining.

values.

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

0

i

2

3

4

Y

6 i 8 9 10 11

16

17

28 18 8 31

Which ones are in the right place?

Insert 16,17,8 first

A D 6 T 8 9 10 11

16 i 8

Kk h(k) = k mod 12
16 4
17 5
28 4
18 6
8 8
31 7

values.

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

0

i

2

3

4

D

6 fi 8 9 10 11

16

17

28 18 8 31

Which ones are in the right place?

Insert 16,17,8 first

A D 6 T 8 9 10 11

16 i 28 8

Kk h(k) = k mod 12
16 4
17 5
28 4
18 6
8 8
31 7

Next, 28

values.

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

0

i

2

3

4

Y

6

i

8

9

10

11

16

17

28

18

8

31

Which ones are in the right place?

Insert 16,17,8 first

Kk h(k) = k mod 12
16 4
17 5
28 4
18 6
8 8
31 7

4 5 6 7 8 9 10 |11
16 |17 |28 |18 |8
Next, 28, 18

values.

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

0

i

2

3

4

D

6

{4

8

9

10

11

16

17

28

18

8

31

Which ones are in the right place?

Insert 16,17,8 first

4

5

6

7

10

11

16

i

28

18

Kk h(k) = k mod 12
16 4
17 5
28 4
18 6
8 8
31 7

Next, 28, 18, 31

values.

Question 3

(Hash table) Let T' be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

0

i

2

3

4

D

6

{4

8

9

10

11

16

17

28

18

8

31

Which ones are in the right place?

Insert 16,17,8 first

4

5

6

7

10

11

16

i

28

18

Kk h(k) = k mod 12
16 4
17 5
28 4
18 6
8 8
31 7

Next, 28, 18, 31

| can enter 16,17,8 in any order

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

values.
0 1 2 3 4 5 6 7 8 9 10 11

16 17 28 18 8 31

a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

b) Can another insertion order give the same state? Explain your answer.

(
(

I (c) What is the load factor of 77 Is there any issue occurring in 7'7
(

d) Illustrate 7" if the collision management technique used was chaining.

Load factor =

Question 3

(Hash table) Let T be an empty hash table of length m = 12 with h(k) = k mod 12, k € Z". T uses
linear probing as a collision management technique. The following is the content of 1" after inserting six

values.
0 1 2 3 4 5 6 7 8 9 10 11

16 17 28 18 8 31

a) Write an order of insertion for these six values such that the state of T" is the one displayed above.

b) Can another insertion order give the same state? Explain your answer.

(

(

(c) What is the load factor of 77 Is there any issue occurring in 77
(

d) Illustrate T if the collision management technique used was chaining.

(d) Illustrate T if the collision management technique used was chaining.

Insertion order: 16, 17, 28, 18, 8, 31

k h(k) = k mod 12
16 4
17 5
28 4
4 5 6 7 8 9
18 6
8 8
31 7

