
PSO7
Quadratic Hashing, Union Find,

BST

Quadratic probing:

i = i’th collision

Trying 16

h(16,0) = 16 + 02 mod 9 = 7

No collision

Trying 35

h(35,0) = 35 + 02 mod 9 =

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 1 mod 9 =

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 =

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3 No Collision

Trying 10

h(10,0) = 10 + 02 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 = 1 Collision

Insert(root,x):

If root == null: return x

If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)

https://justin-zhang.com/teaching/cs251Old
/S25/pso6Noted.pdf

https://justin-zhang.com/teaching/cs251Old/S25/pso6Noted.pdf
https://justin-zhang.com/teaching/cs251Old/S25/pso6Noted.pdf

How does deletion work?

Deletion in a BST: Depends on # children

Basically, want to delete while keeping order

del(H)

del(A)

del(E)

B DB

`
Assume 1 child deletion swaps
with successor

`
If 1 child deletion swaps with
predecessor

What is Quick Find?

Union(5,4)

Union(0,7)

What is quick union?

How do the trees look?

 Path compression:

Union by weight:

3

1

8

0 9

2

6

7

4

5

Union(5,6)

3

1

8

0 9

2

6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)
Step 3: Update the table

