PSO7

Quadratic Hashing, Union Find,
BST

You are in the role of a hacker trying to break down a hash table. The information collected so far
indicates the hash table uses Quadratic Probing with h(k,7) = (k +i?) mod m for collision management
and its current capacity is m = 9. The current state of the table is:

0 1 2 3 4 6 7 8
17 28 20 32 19
The system is nearly overloaded and will collapse if the next item inserted causes at least 4 probes. As

an attacker you are considering inserting the following keys: 16, 35 and 10. Which (if any) of these
values would bring the system down if inserted next? Explain your answer.

| O

Quadratic probing:

I = 1'th collision

Trying 16

0

1

2

17

28

20

32

19

h(16,0)=16 + 02 mod 9 =7

No collision

Trying 35

0

1

2

17

28

20

32

19

h(35,0) =35+ 0°mod 9 =

Trying 35

0 1 2 3 4

17 28 20

h(35,0) = 35 + 02 mod 9 = 8 Collision
h(35,1) =35+ 1mod 9 =

Trying 35

0

1

2

17

28

20

32

19

h(35,0) = 35 + 02 mod 9 = 8 Collision
h(35,1) = 35+ 12 mod 9 = 0 Collision
h(35,2) = 35 + 22 mod 9 =

Trying 35

0

1

2

17

28

20

32

19

h(35,0) = 35 + 02 mod 9 = 8 Collision
h(35,1) = 35+ 12 mod 9 = 0 Collision
h(35,2) = 35 + 22 mod 9 = 3 No Collision

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 02 mod 9 =

Trying 10

0 1 2 3 4

17 28 20

h(10,0) = 10 + 02 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0° mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) =10 + 22 mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) = 10 + 22 mod 9 = 5 Collision
(10,3)

h(10,3) =10 + 3 mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) = 10 + 22 mod 9 = 5 Collision
(10,3)

h(10,3) = 10 + 32 mod 9 = 1 Collision

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

Insert(root,x): https://justin-zhang.com/teaching/cs2510Id
/S25/psob6Noted.pdf

If root == null: return x
If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)

https://justin-zhang.com/teaching/cs251Old/S25/pso6Noted.pdf
https://justin-zhang.com/teaching/cs251Old/S25/pso6Noted.pdf

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

How does deletion work?

Deletion in a BST. Depends on # children

Basically, want to delete while keeping order

e del(H)

del(A)

il B —_—_______—————___________,_____———-*
O O

©0
® ©

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

. . A
Assume 1 child deletion swaps /\
with successor Delete A, then B|B D
/
C
A
/ \
Delete B, then A|IB D
/
C

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

C
\
111 child deletion swaps with duble €, fur flde[) 4 b
predecessor K
N Ny
delele 0, o deek ¢ €
/ N\
40
N

B

Question 2

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple

counterexample to his claim.

(Union find)
1. Suppose that we implemented the Union-Find data structure with quick-find. The current state of
the data-structure is defined in the following table.

i 0 1 2 3 4 5 6 7 8 9
Id[i] il 1 7 3 3 3 7 7 1 1

List each disjoint set.

What is Quick Find?

2. What does the table of the union-find data structure look like after running the following two unions:
Union(5,4),Union(0,7)7

i [0 [1 |2 [3 [4 [5 [6 |7 [8 |9
ai (1 |1 |7 |3 |3 |3 |7 |7 |1 |1

Union(5,4)

Union (0,7)

Question 3

(Union find)

1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the
data-structure is defined in the following table.

i 0 1 2 3 1 0 6 7 8 9
Idfif |8 |3 1 3 |4 [2 [1 8
List each disjoint set along with its canonical element (Hint: It may help to draw the corresponding
trees).

What is quick union?

How do the trees look?

i 0 |1 [2
Idi| |8 |3 1 3 [4 |4

-
w
e
=
o
-1
=

0 1 8

(3

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Path compression:

Union by weight:

i (o |1]2 [3 |4 [5 |6 [7 |8 |9
il |8 |3 1 3 14 |4 |2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

i 0 |1 |2 [3 |4 | 9
Idiif |8 |3 1 3 |4 1 2 |6 1 8

o
==
-3
ox

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)
Step 1: find their roots by

Q Q 9 traversing up the tree

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 5 |6 |7 9
Idiif |8 1 3 1 2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 1 2 |3 5 |6 |7 |8 |9
Idiij |8 |: 1 3 1 2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots

Union by weight
(minimize suffering!)

Step 3: Update the table

i 0 4 |5 [6 [7 [8 J9
Idfif |8 1 4 |14 |2 |6 1 8

