
PSO7
Quadratic Hashing, Union Find,

BST

inform :

PURDUE
quickSort(A) :

p= AC-1]

Coun 3 GR)= Partition (A, p)-

-

↓ com
·

2145 quicksort (1)eCp]@gricksort(R)

[*(45]
[P] R =

b
= 2 "

DEPRUL

16357
b

↓

Quadratic probing:

i = i’th collision

another avadratic hash

h(k, i) = K + i +i< mode
L(key , iteration) ratic

--

#attempt : n(key ,0) (Collision]

h(lley , 1)
!

Trying 16

h(16,0) = 16 + 02 mod 9 = 7

No collision

To
-

Trying 35

h(35,0) = 35 + 02 mod 9 =
-

g

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 1 mod 9 =

-

2

D
-
a

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3
=

Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3 No Collision

qu

2 collisions

Trying 10

h(10,0) = 10 + 02 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 =

Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 = 1 Collision

~

10 gives usD collisions.

Insert(root,x):

If root == null: return x

If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)

https://justin-zhang.com/teaching/cs251Old
/S25/pso6Noted.pdf

How does deletion work?

Deletion in a BST: Depends on # children

Basically, want to delete while keeping order

del(H)

del(A)

del(E)

B DB

`
Assume 1 child deletion swaps
with successor

`
If 1 child deletion swaps with
predecessor

What is Quick Find?

-

b A 6

=

#orfindto check Set membership (fied
S
1 S253

optimizes
-

>
Ga ,b) 303 So3

is a Ese ?
cfind

B idCi]Ei is in set idi] a beable to do unieus

D 30,20, 9 .3 32 ,6,7333 ,453 Union (1
,2)
-> Sp = Sa,boch

S1
·S S3 = S

, USz
.

def find (e) :i find(s)= Sy return 169e] . //0(1)

Union(5,4)

Union(0,7)

30, % , 0 ,9392
,
6
,
7333 ,153

- both in 53
- sotable unchanged .

ir1%15% (19
E·&

② DD

Union (a ,b) : O(n) time .
-x i

·go through all elfs pointingto parent(a) :
-

makethem point to i -1/21%15% 13/3/Parent(b)
. id [i]

What is quick union?

How do the trees look?

- - --

Union(a,b)

↳
· quick findwithenger trees

A
T b

B ⑪
⑫ T
① ⑤ ↳

exifind(a)
- F find(a) = Va
->D -

3 ⑨ A51, 8,9, 0, 2, 6, 73

NOCIonsestPathSee ⑧ ⑧
S4 = 2453I

 Path compression:

Union by weight:

Anytime I traverse the tree (findlunion) , Imove all traversed nodes

up to the root atDo De
e :

find)=A
Union (S,T) Put herfreset

O

3

1

8

0 9

2

6

7

4

5

Union(5,6)

3

1

8

0 9

2

6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
-path compress

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

&

Union(a ,b) :
-find(a) :

ra-find(a) 1/path comp.

rp = Find(b)

Union-by-weight (Ga - Vb)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)

3

1

8

0 9

2 6

7

4

5

Union(5,6)
Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight

(minimize suffering!)
Step 3: Update the table

13 my . My

