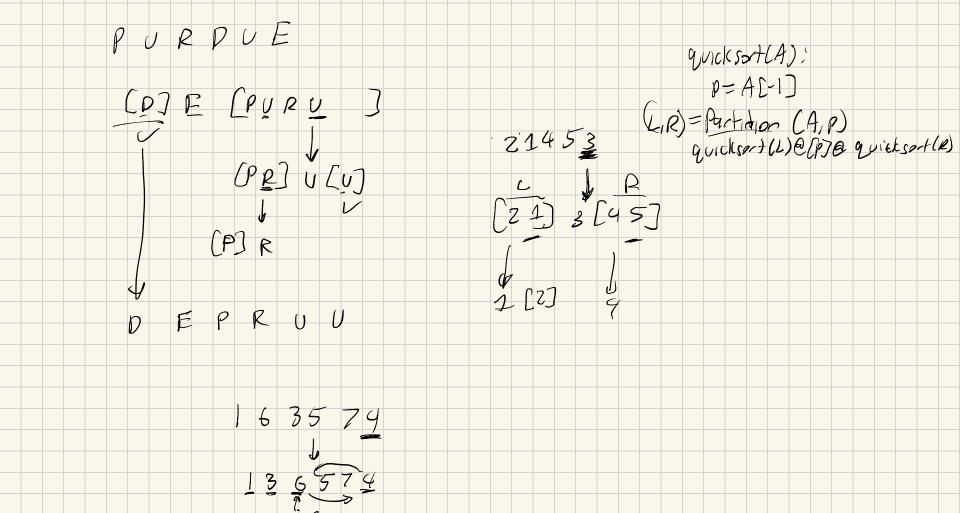


PSO7

Quadratic Hashing, Union Find, BST

Midtern:



You are in the role of a hacker trying to break down a hash table. The information collected so far indicates the hash table uses Quadratic Probing with $h(k, i) = (k + i^2) \mod m$ for collision management and its current capacity is m = 9. The current state of the table is:

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

The system is nearly overloaded and will collapse if the next item inserted causes at least 4 probes. As an attacker you are considering inserting the following keys: 16, 35 and 10. Which (if any) of these values would bring the system down if inserted next? Explain your answer.

another quadratic hash
$$h(k, \bar{t}) \geq k + \bar{t} + \bar{t}^2 \mod n$$

Quadratic probing:

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(16,0) = 16 + 0^2 \mod 9 = \underline{7}$$

No collision

Trying 35

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(35,0) = 35 + 0^2 \mod 9 =$$

Trying 35

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(35,0) = 35 + 0^2 \mod 9 = 8$$
 Collision

$$h(35,1) = 35 + 1 \mod 9 = 0$$

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(35,0) = 35 + 0^2 \mod 9 = 8$$
 Collision

$$h(35,1) = 35 + 1^2 \mod 9 = 0$$
 Collision

$$h(35,2) = 35 + 2^2 \mod 9 = 3$$

0	1	2	3	4	5	6	7	8
17	28	20	76		5	32		19

$$h(35,0) = 35 + 0^2 \mod 9 = 8$$
 Collision

$$h(35,1) = 35 + 1^2 \mod 9 = 0$$
 Collision

$$h(35,2) = 35 + 2^2 \mod 9 = 3$$
 No Collision

Trying 10

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

 $h(10,0) = 10 + 0^2 \mod 9 =$

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(10,0) = 10 + 0^2 \mod 9 = 1$$
 Collision

$$h(10,1) = 10 + 1^2 \mod 9 =$$

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(10,0) = 10 + 0^2 \mod 9 = 1$$
 Collision

$$h(10,1) = 10 + 1^2 \mod 9 = 2$$
 Collision

$$h(10,2) = 10 + 2^2 \mod 9 =$$

0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(10,0) = 10 + 0^2 \mod 9 = 1$$
 Collision

$$h(10,1) = 10 + 1^2 \mod 9 = 2$$
 Collision

$$h(10,2) = 10 + 2^2 \mod 9 = 5$$
 Collision

$$h(10,3) = 10 + 3^2 \mod 9 =$$

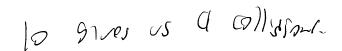
0	1	2	3	4	5	6	7	8
17	28	20			5	32		19

$$h(10,0) = 10 + 0^2 \mod 9 = 1$$
 Collision

$$h(10,1) = 10 + 1^2 \mod 9 = 2$$
 Collision

$$h(10,2) = 10 + 2^2 \mod 9 = 5$$
 Collision

$$h(10,3) = 10 + 3^2 \mod 9 = 1$$
 Collision



- (1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into an initially empty binary search tree?
- (2) Is the operation of deletion "commutative" in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.
- (3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Your friend claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a simple counterexample to his claim.

If (x <= root.val): insert(root.left,x)</pre>

If (x > root.val): insert(root.right,x)

- (1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into an initially empty binary search tree?
- (2) Is the operation of deletion "commutative" in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.
- (3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Your friend claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a simple counterexample to his claim.

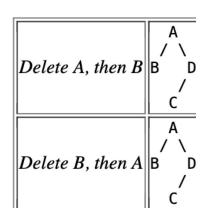
How does deletion work?

Deletion in a BST: Depends on # children

Basically, want to delete while keeping order del(H) del(A) del(E)

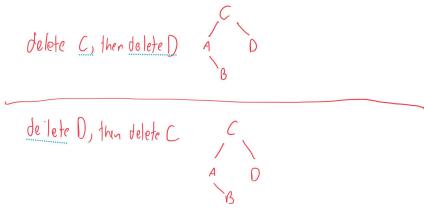
- (1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into an initially empty binary search tree?
- (2) Is the operation of deletion "commutative" in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.
- (3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Your friend claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a simple counterexample to his claim.

Assume 1 child deletion swaps with **successor**



- (1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into an initially empty binary search tree?
- (2) Is the operation of deletion "commutative" in the sense that deleting x and then y from a binary search tree leaves the same tree as deleting y and then x? Argue why it is or give a counterexample.
- (3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Your friend claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a simple counterexample to his claim.

If 1 child deletion swaps with **predecessor**



(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left of the search path; B, the keys on the search path; and C, the keys to the right of the search path. Your friend claims that any three keys $a \in A$, $b \in B$, and $c \in C$ must satisfy $a \le b \le c$. Give a simple counterexample to his claim.

(Union find)

1. Suppose that we implemented the Union-Find data structure with quick-find. The current state of the data-structure is defined in the following table.

i	Q	1	2	3	4	5	6	7	8	9
Id[i]	1	1	7	3	3	3	7	7	1	1

List each disjoint set.

What is Quick Find?

optimizes quick find

Quick find

Quick find

(d[i]
$$\cong$$
 i is in set id[i] • beautile to so unions

(0,1,1,9) {2,67} {3,4,5} Union (1,2) \Rightarrow S4 = {a,b,c}

S1 S2 S3 = S,US2.

2. What does the table of the union-find data structure look like after running the following two unions:

{0,1,8,9} {2,6,7} {3,4,5} Union(5,4), Union(0,7)?

i	0	1	2	3	4	5	6	7	8	9
Id[i]	1	1	7	3	3	3	7	7	1	1

Vnion(a,b); O(n) time.
go through all elts pontinuto prenta;

							7			
ラリ	1.7	7	31	3	3 1	7	7	7	フ	

Union (0,7)

(Union find)

 Suppose that we implemented Union-Find data structure with quick-union. The current state of the data-structure is defined in the following table.

i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	8

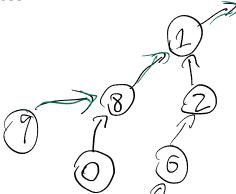
List each disjoint set along with its canonical element (Hint: It may help to draw the corresponding trees).

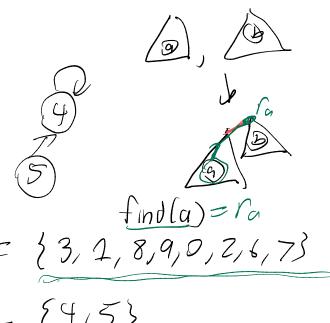
What is quick union?

· quickfind with longer trees

How do the trees look?

ex, find (9)
3
1/0 Cloasest path





i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8

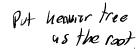
Path compression:

Anytime I traverse the tree (find/union), I move all traversed nodes

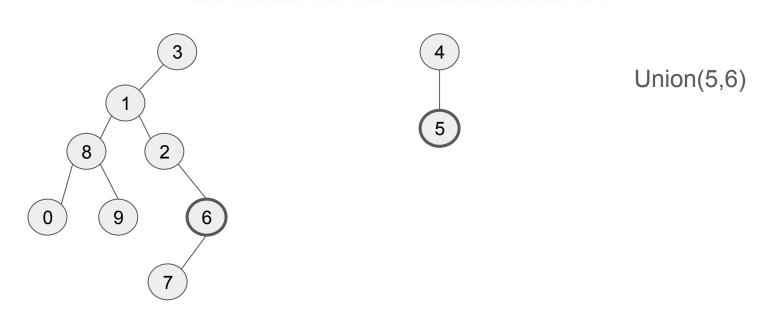
Up to the root

Union by weight:

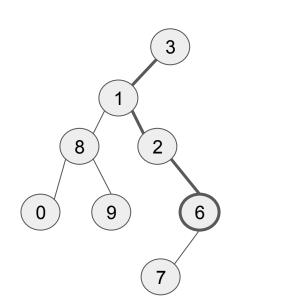
Union (S,T)



i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8



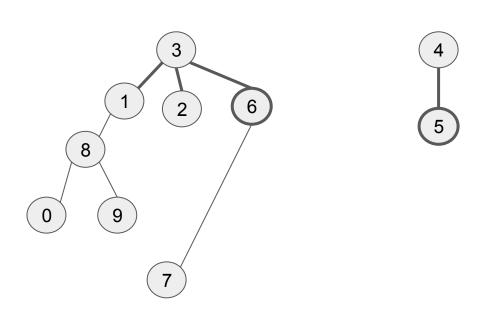
i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8



Union(5,6)
Step 1: find their roots by traversing up the tree

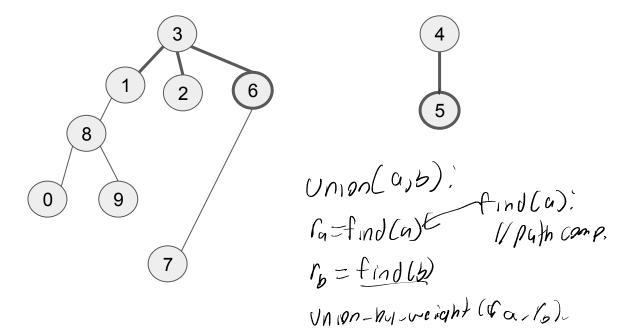
— Path compass

i	0	1	2	3	4	- 5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8



Union(5,6)
Step 1: find their roots by traversing up the tree
Path compress

i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	8

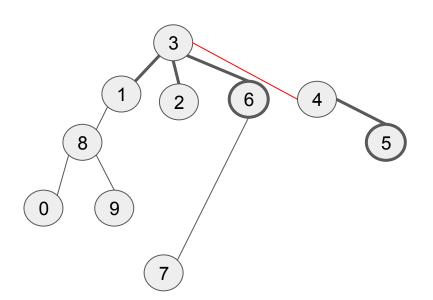


Union(5,6)
Step 1: find their roots by traversing up the tree

Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8

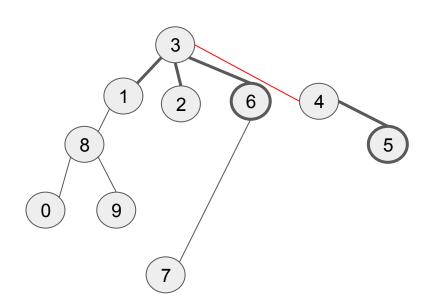


Union(5,6)
Step 1: find their roots by traversing up the tree

Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i	0	1	2	3	4	- 5	6	7	8	9
Id[i]	8	3	1	3	4	4	2	6	1	- 8



Union(5,6)

Step 1: find their roots by traversing up the tree

Path compress

Step 2: connect roots

Union by weight (minimize suffering!)

Step 3: Update the table

i	0	1	2	3	4	5	6	7	8	9
Id[i]	8	3	113	3	103	4	13	6	1	8