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Quadratic probing: 

i = i’th collision

another avadratic hash

h(k, i) = K + i +i< mode
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Trying 16

h(16,0) = 16 + 02 mod 9 = 7

No collision
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Trying 35

h(35,0) = 35 + 02 mod 9 = 
-
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Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 1 mod 9 =  
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Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3
=



Trying 35

h(35,0) = 35 + 02 mod 9 = 8 Collision

h(35,1) = 35 + 12 mod 9 = 0 Collision

h(35,2) = 35 + 22 mod 9 = 3 No Collision

qu

2 collisions



Trying 10

h(10,0) = 10 + 02 mod 9 = 



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 =  



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 =  

 



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 =

 



Trying 10

h(10,0) = 10 + 02 mod 9 = 1 Collision

h(10,1) = 10 + 12
 mod 9 = 2 Collision

h(10,2) = 10 + 22 mod 9 = 5 Collision

h(10,3) = 10 + 32 mod 9 = 1 Collision

 

~

10 gives usD collisions.



Insert(root,x):

If root == null: return x 

If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)

https://justin-zhang.com/teaching/cs251Old
/S25/pso6Noted.pdf 



How does deletion work?



Deletion in a BST: Depends on # children

Basically, want to delete while keeping order

del(H)

del(A)

del(E)

B DB



`
Assume 1 child deletion swaps 
with successor



`
If 1 child deletion swaps with 
predecessor 





What is Quick Find?
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What is quick union?

How do the trees look?
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 Path compression:

Union by weight:

Anytime I traverse the tree (findlunion) , Imove all traversed nodes

up to the root atDo De
e :

find)=A
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Union(5,6)
Step 1: find their roots by 
traversing up the tree
Path compress

Step 2: connect roots
Union by weight 

(minimize suffering!)

&

Union(a ,b) :
-find(a) :

ra-find(a) 1/path comp.

rp = Find(b)

Union-by-weight (Ga - Vb)
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Union(5,6)
Step 1: find their roots by 
traversing up the tree
Path compress

Step 2: connect roots
Union by weight 

(minimize suffering!)
Step 3: Update the table

13 my . My


