PSO7

Quadratic Hashing, Union Find,
BST

Wb

Gk s 4) !
p= AL-1]
L@)=Packdiar (4,0)

(‘L(/(C’(W/} ﬂ,) @[;’{7@, ﬂbu \U;_(ﬂf/’[l)

You are in the role of a hacker trying to break down a hash table. The information collected so far
indicates the hash table uses Quadratic Probing with h(k,7) = (k +i?) mod m for collision management

and its current capacity is m = 9. The current state of the table is:

0

1

2

3

4 6

8

17

28

20

| O

32

19

The system is nearly overloaded and will collapse if the next item inserted causes at least 4 probes. As
an attacker you are considering inserting the following keys: 16, 35 and 10. Which (if any) of these

values would bring the system down if inserted next? Explain your answer.

Quadratic probing:

I = 1'th collision
— /—\

;7[/49% iersifion)

14

andller qundioic hesh

%(t/T)Z k+7+7¢ mod o

—
NS

M P %[/LG\MO:) C[O))(b(\oﬂ 7/
I [lez,)

Trying 16

0

1

2

17

28

20

32

19

h(16,0)= 16 + 02mod 9 =7

No collision

|5

Trying 35

0

1

2

17

28

20

32

h(35,0)=35+02mod 9= Y

Trying 35

0 1 2 3 4

17 28 20

h(35,0) = 35 + 02 mod 9 = 8 Collision
T
h(35,1)=35+1mod9=0

Trying 35

0

1

2

17

28

20

32

19

h(35,0) = 35 + 02 mod 9 = 8 Collision
h(35,1) = 35+ 12 mod 9 = 0 Collision
h(35,2)=35+22mod 9= %

Trying 35

0 11 12 [3 - .
h(35,0) = 35 + 02 mod 9 = 8 Collision
h(35,1) =35 + 12 mod 9 = 0 Collision 2 colli§ions

h(35,2) = 35 + 22 mod 9 = 3 No Collision

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 02 mod 9 =

Trying 10

0 1 2 3 4

17 28 20

h(10,0) = 10 + 02 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0° mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) =10 + 22 mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) = 10 + 22 mod 9 = 5 Collision
(10,3)

h(10,3) =10 + 3 mod 9 =

Trying 10

0

1

2

17

28

20

32

19

h(10,0) = 10 + 0 mod 9 = 1 Collision
h(10,1) =10 + 12mod 9 = 2 Collision
h(10,2) = 10 + 22 mod 9 = 5 Collision
(10,3)

h(10,3) = 10 + 32 mod 9 = 1 Collision

lO 51,05 US d CQ)){,lfonv

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

Insert(root,x): https://justin-zhang.com/teaching/cs2510Id
/S25/pso6Noted.pdf

If root == null: return x
If (x <= root.val): insert(root.left,x)

If (x > root.val): insert(root.right,x)

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

How does deletion work?

Deletion in a BST. Depends on # children

Basically, want to delete while keeping order

e del(H)

del(A)

il B —_—_______—————___________,_____———-*
O O

©0
® ©

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

. . A
Assume 1 child deletion swaps /\
with successor Delete A, then B|B D
/
C
A
/ \
Delete B, then A|IB D
/
C

Question 2

(1) What is the asymptotic performance of inserting n items with keys sorted in a descending order into
an initially empty binary search tree?

(2) Is the operation of deletion “commutative” in the sense that deleting x and then y from a binary
search tree leaves the same tree as deleting y and then 7 Argue why it is or give a counterexample.

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple
counterexample to his claim.

C
\
111 child deletion swaps with duble €, fur flde[) 4 b
predecessor K
N Ny
delele 0, o diek ¢ €
/ N\
40
b

B

Question 2

(3) Your friend thinks he has discovered a remarkable property of binary search trees. Suppose that the
search for key k in a binary search tree ends up in a leaf. Consider three sets: A, the keys to the left
of the search path; B, the keys on the search path; and C, the keys to the right of the search path.
Your friend claims that any three keys a € A, b € B, and ¢ € C must satisfy a < b < ¢. Give a simple

counterexample to his claim.

(Union find)

1. Suppose that we implemented the Union-Find data structure with quick-find. The current state of
the data-structure is defined in the following table.

i 0 1 2 3 4 5 6 7 8 9
Idfij | T 1 7 3 3 3 7 7 1 1
List each disjoint set. [/ nie~

. beahle #f’ C%@c y/%ﬁfm)m’&/)/p [/ﬂf?/)

What is Quick Find? /> f& g} {c} §d3

Qmm) 205 c 5
5 Q
%MCK find I 54/ ‘

—

[5[\"1?_‘: f (5 1A S@JL 7()[:‘{7 ° baak)e 7[0 [f@ Un) 0y

®C\® g(/C\ fQ///I,i/'I} %Z /5175 { g/‘%§§ U/l 20 [i/ Z) 7 S‘f - {q/L,, C)
é ® SI S, 55 TS

& def IDr IA)
65@ fi)= 5 M(J’rurn 14%e]. foL)

2. What does the table of the union-find data structure look like after running the following two unions:

Union(5,4),Union(0,7)7 _ Z,6,2) 9 3.9 =
EO/ \,/8/45 { g = /2
i 0 1 2 3 4 5) 6 7 8 9
W [T T |7 [3 [3 [3 |7 |7 |1 |1

_bahin Sz

Union (5 i

= 50 Wle Unihensed

'\ ololafels] 456 7 /13/‘%) |

Weo L Tla Iz (sl [z 2Tz []] g/

Union(0,7)
Unionlak): O Nime. ~ '~ {5(5?)
"9 j‘WMM o)/MM@JF" M’”L[D’) S

Yﬂuw#@mp@nﬂv { ,@] 91 Z/ 3/ Cf/ S) 6})8 }O')
et oo |zl 77z 3 1721717 [>

Question 3
(Union find)
1. Suppose that we implemented Union-Find data structure with quick-union. The current state of the
data-structure is defined in the following table.

i 0 [1 [2 [3 [4 5 [6 |7 |8 [9
i |8 |3 |1 3 |4 J4 [2 |6 1 8
b R

’ et
List each disjoint set along with its canonical element (Hint: It may help to draw the corresponding

trees). Un /'Vnéol/b)

What is quick union? A Q

aol/VlC}ﬁfmJ u/lﬂ; Z&ﬂger ree)
7o

)

How do the trees look? jgj @ i g
9° & 8
o b 00 e 5 !

md[a =/

s {7 5 é 57 1% 1,899,247
Q

100 lonse) pot b 7) f Qf/ /3 }

Fﬂ%(e:f>

i 0 1 2 |3 [
Idiij |8 |3 1 3 |4 1

—

o

) B |
ox
=

(S
=
=100
o

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Path compression:

Aﬂk['hmé 1 '}/01/6/36 '}h %@& C‘ll\ﬂd/cjwfao ’/P\OVQ 91// %&mcd /IOJ@S

Uy fo ﬁ«(’, root 7
j — 'ﬂ/é

X find () =
nign CSﬂ‘) Pt heowrir Free

us fhe /‘m/j

Union by weight:

i (o |1]2 [3 |4 [5 |6 [7 |8 |9
il |8 |3 1 3 14 |4 |2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

i 0 1 [2 |3 [4 [! 9
Idiij |8 |3 1 3 |4 1 2 |6 1 8

o
==
-3
ox

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Union(5,6)
Step 1: find their roots by

e 9 9 traversing up the tree

/fé'ﬁ' CQ/)’?})@.U

i 0 4 15 |6 [7 9
Idiif |8 4 |14 |2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

i

1d/i

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6.5). What is updated state of the Union Find data structure? (Note: Refer to the
table in part (a) for the initial state of the union-find data structure,)

Ummé C‘Jb) :

md&c'y
(o j‘Plﬂd[V’)/%//ﬂQﬁ’ co p,
ly = wﬁ)

Un wn - vt »;C/}”L (Co, /).

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 5 |6 |7 9
Idiif |8 1 3 1 2 |6 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots
Union by weight
(minimize suffering!)

i 0 1]2 3 5 |6 |7 |8 |9
Idiij |8 |: 1 3 1 2 |6 1 8

2. Suppose we optimize our construction by implementing path compression and union-by-weight. We
then run Union(6,5). What is updated state of the Union-Find data structure? (Note: Refer to the

table in part (a) for the initial state of the union-find data structure,)

Union(5,6)

Step 1: find their roots by
traversing up the tree
Path compress

Step 2: connect roots

Union by weight
(minimize suffering!)

Step 3: Update the table

i 0 2 4 5] 7 8 9
Idfif |8 VK VR e | 6 1 8

