PSO 10

Strong and Weak Connection

https://justin-zhang.com/teaching/CS251

(Articulation point)

We define an *articulation point* as a vertex that when removed causes a connected graph to become disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

- (1) How can we efficiently check whether or not a graph is disconnected?
- (2) How to determine if a node u is an articulation point or not?

Consider the directed graph G = (V, E) given below:

where the set of vertices is $V = \{A, B, C, D, E\}$ and the set of edges is:

 $E = \{ (A, B), (A, C), (B, C), (B, D), (C, E), (D, E) \}.$

- 1. Construct the adjacency matrix A of G.
- 2. Compute the transitive closure of G using Warshall's algorithm.
- 3. Draw the graph representation of the transitive closure of G.
- 4. Determine the reachability of each node in G.
- 5. Identify if G is strongly connected. If not, can you add one edge to make G become a strongly connected graph?

Consider the following graph G:

Let G_d be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge in G, their respective directed edge in G_d is as follows:

Edge with vertices u and $v = \begin{cases} (u, v), & \deg(u) < \deg(v) \lor (\deg(u) = \deg(v) \land u < v) \\ (v, u), & \text{Otherwise} \end{cases}$

- 1. Is G_d strongly connected? If yes, explain why. Otherwise, list the minimum number of edges required to make G_d strongly connected.
- 2. Show all the topological orderings of G_d .

(undirected) (1) How can we efficiently check whether or not a graph is disconnected?

Two vertices u,v are connected if there is some way to get from $u \rightarrow v$.

Graph is connected if for *all* u,v vertices, u and v are connected

Are there any algorithms that can help us here?

(undirected) (1) How can we efficiently check whether or not a graph is disconnected?

Two vertices u,v are connected if there is some way to get from $u \rightarrow v$.

Graph is connected if for *all* u,v vertices, u and v are connected

Use BFS/DFS, count the number of vertices visited

(Articulation point)

We define an *articulation point* as a vertex that when removed causes a connected graph to become disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

(2) How to determine if a node u is an articulation point or not?

Any idea from pt 1?

(Articulation point)

We define an *articulation point* as a vertex that when removed causes a connected graph to become disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

(2) How to determine if a node u is an articulation point or not?

Any idea from pt 1? Check connectivity when u is deleted

Exercise: Suppose you wanted to find all articulation points. Can you do so in O(|V| + |E|) time? Hint: a point is an articulation point iff it is not in a cycle.

Consider the directed graph G = (V, E) given below:

1. Construct the adjacency matrix A of G.

u/v	А	В	С	D	Е
Α	0				
В		0			
С			0		
D				0	
E					0

Consider the directed graph G = (V, E) given below:

2. Compute the transitive closure of G using Warshall's algorithm.

What's your algorithm Warshall/Floyd/Ingerman/Roy/Kleene?

History and naming [edit]

Worst-case space $\Theta(|V|^2)$ complexity

The Floyd-Warshall algorithm is an example of dynamic programming, and was

published in its currently recognized form by Robert Floyd in 1962.^[3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959^[4] and also by Stephen Warshall in 1962^[5] for finding the transitive closure of a graph,^[6] and is closely related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression, with the difference being the use of a min-plus semiring.^[7] The modern formulation of the algorithm as three nested for-loops was first described by Peter Ingerman, also in 1962.^[8]

algorithm Floyd-Warshall(M:adjacency matrix representing G(V, E))

```
R^{(-1)} \leftarrow M
   n \leftarrow |V|
    for k from 0 to n-1 do
        for i from 0 to n-1 do
            for j from 0 to n-1 do
                R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j])
            end for
        end for
    end for
    return R^{(n-1)}
end algorithm
```


 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \begin{array}{l} \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } i \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \end{array} \\ \begin{array}{l} \mbox{ end for } \end{array} \end{array}$

return $R^{(n-1)}$ end algorithm

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽⁰⁾	А	В	С	D	Е
А					
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
_	0	0	0	0	•

R ⁽⁰⁾	А	В	С	D	Е
А					
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
_	0	0	0	0	•

R ⁽⁰⁾	А	В	С	D	Е
А	0				
В					
С					
D					
E					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Г	0	0	0	0	0

R ⁽⁰⁾	А	В	С	D	E
А	0	1			
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
_	0	0	•	0	•

R ⁽⁰⁾	А	В	С	D	Е
А	0	1			
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
-	•	•	•	•	•

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1		
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
_	•	•	•	•	•

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	
В					
С					
D					
Е					

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
_	0	0	•	•	•

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В					
С					
D					
Е					

 $R^{(-1)} \leftarrow M$ $n \leftarrow |V|$ for k from 0 to n-1 do for i from 0 to n-1 do for j from 0 to n-1 do $R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j]$ or $(R^{(k-1)}[i,k]$ and $R^{(k-1)}[k,j])$ end for end for end for return $R^{(n-1)}$

end algorithm

R(-1)	A	В	С	D	E	
А	0	1	1	0	0	
В	0	0	1	1	0	
С	0	0	0	0	1	
D	0	0	0	0	1	
_	•	•	•		•	

What's the final R⁽⁰⁾?

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0				
С					
D					
Е					

 $\begin{array}{l} R^{(-1)} \leftarrow M\\ n \leftarrow |V| \end{array}$ for k from 0 to n-1 do
for i from 0 to n-1 do
for j from 0 to n-1 do $R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \text{ or } (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j]) \\ \text{ end for} \\ \text{end for} \end{array}$ end for

 $\begin{array}{c} {\rm return} \ R^{(n-1)} \\ {\rm end} \ {\rm algorithm} \end{array}$

R ⁽⁻¹)	A	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
-	0	0	0	•	•

Whats the final R⁽⁰⁾? Same as R⁽⁻¹⁾, why?

$$k = A$$

R ⁽⁰⁾	A	В	С	D	Е
Α	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1		
В			1	1	
С					1
D					1
Е					

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1		
В			1	1	
С					1
D					1
Е					

R ⁽⁰⁾	А	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1		
В			1	1	
С					1
D					1
E					

R ⁽⁰⁾	Α	В	С	D	F
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1		
В			1	1	
С					1
D					1
Е					

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1	1	
В			1	1	
С					1
D					1
Е					

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	E
А	0	1	1	1	?
В			1	1	
С					1
D					1
Е					

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1	1	0
В			1	1	
С					1
D					1
Е					

 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \begin{array}{l} \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \end{array} \\ \begin{array}{l} \mbox{ end for } \end{array} \\ \begin{array}{l} \mbox{ end for } \end{array} \end{array}$

return $R^{(n-1)}$ end algorithm

R ⁽⁰⁾	А	В	С	D	Е
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final $R^{(1)}$? k = B i = Bj = A

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1	1	0
В			1	1	
С					1
D					1
Е					

 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } i \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \end{array}$

return $R^{(n-1)}$ end algorithm

R ⁽⁰⁾	А	В	С	D	E
А	0	1	1	0	0
В	0	0	1	1	0
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final R⁽¹⁾?

R ⁽¹⁾	А	В	С	D	Е
Α	0	1	1	1	0
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

return $R^{(n-1)}$ end algorithm

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1	1	0
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final R⁽²⁾?

R ⁽²⁾	А	В	С	D	Е
А					
В					
С					
D					
E					

 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } i \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \\ \mbox{ end for } \end{array}$

 $\begin{array}{c} {\rm return} \ R^{(n-1)} \\ {\rm end} \ {\rm algorithm} \end{array}$

R ⁽¹⁾	А	В	С	D	Е
А	0	1	1	1	0
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final R⁽²⁾?

R ⁽²⁾	А	В	С	D	Е
Α	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

return $R^{(n-1)}$ end algorithm

R ⁽²⁾	А	В	С	D	E
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final R⁽³⁾?

R ⁽³⁾	А	В	С	D	Е
А					
В					
С					
D					
Е					

 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \begin{array}{l} \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \end{array} \\ \begin{array}{l} \mbox{ end for } \end{array} \end{array}$

 $\begin{array}{c} {\rm return} \ R^{(n-1)} \\ {\rm end} \ {\rm algorithm} \end{array}$

R ⁽²⁾	А	В	С	D	Е
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final $R^{(3)}$?

R ⁽³⁾	А	В	С	D	Е
Α	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

 $\begin{array}{l} R^{(-1)} \leftarrow M \\ n \leftarrow |V| \end{array} \\ \begin{array}{l} \mbox{for } k \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } i \mbox{ from 0 to } n-1 \mbox{ do } \\ \mbox{ for } j \mbox{ from 0 to } n-1 \mbox{ do } \\ R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \mbox{ or } (R^{(k-1)}[i,k] \mbox{ and } R^{(k-1)}[k,j]) \\ \mbox{ end for } \\ \mbox{ end for } \end{array} \\ \begin{array}{l} \mbox{ end for } \end{array} \\ \end{array}$

 $\begin{array}{c} {\rm return} \ R^{(n-1)} \\ {\rm end} \ {\rm algorithm} \end{array}$

R ⁽³⁾	А	В	С	D	E
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
Е	0	0	0	0	0

What's the final $R^{(4)}$?

R ⁽⁴⁾	А	В	С	D	Е
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

R ⁽⁴⁾	Α	В	С	D	E
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

Summary For each k = A,B,C,D,E: For each i = ...: For each j = ...: Check if there is a path between i and j through k

 $\begin{array}{ll} \mathsf{R}^{(\text{-1})} &: \mbox{Adj Matrix} \\ \mathsf{R}^{(0/A)} &: \ \mathsf{R}^{(\text{-1})} + (\mbox{paths through A}) \\ \mathsf{R}^{(1/B)} &: \ \mathsf{R}^{(0/A)} + (\mbox{paths through B}) \\ \mathsf{R}^{(2/C)} &: \ \mathsf{R}^{(1/B)} + (\mbox{paths through C}) \\ \mathsf{R}^{(3/D)} &: \ \mathsf{R}^{(2/C)} + (\mbox{paths through D}) \\ \mathsf{R}^{(4/E)} &: \ \mathsf{R}^{(3/D)} + (\mbox{paths through E}) \end{array}$

R ⁽⁴⁾	А	В	С	D	E
Α	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

Consider the directed graph G = (V, E) given below:

R ⁽⁴⁾	А	В	С	D	E
А	0	1	1	1	1
В	0	0	1	1	1
С	0	0	0	0	1
D	0	0	0	0	1
E	0	0	0	0	0

The transitive closure can help here

5. Identify if G is strongly connected. If not, can you add one edge to make G become a strongly connected graph?

v	deg(v)
1	
2	
3	
4	
5	
6	
7	

Let G_d be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge in G, their respective directed edge in G_d is as follows:

Edge with vertices u and $v = \begin{cases} (u, v), & \deg(u) < \deg(v) \lor (\deg(u) = \deg(v) \land u < v) \\ (v, u), & \text{Otherwise} \end{cases}$

Let's draw G_d First, calculate deg(v)

Let G_d be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge in G, their respective directed edge in G_d is as follows:

Edge with vertices u and $v = \begin{cases} (u, v), & \deg(u) < \deg(v) \lor (\deg(u) = \deg(v) \land u < v) \\ (v, u), & \text{Otherwise} \end{cases}$

Let's draw G_d

1. Is G_d strongly connected? If yes, explain why. Otherwise, list the minimum number of edges required to make G_d strongly connected.

1. Is G_d strongly connected? If yes, explain why. Otherwise, list the minimum number of edges required to make G_d strongly connected.

If we run Warshall..

u/v

Observations:

1. Is G_d strongly connected? If yes, explain why. Otherwise, list the minimum number of edges required to make G_d strongly connected.

"Pulling" the graph to make source/sink a little more clear

