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Why compression











Huffman Idea: Compress the most frequent letters to be shortest, an example..
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Inner-nodes: freqs
Leaves: letters

What is the most freq. letter?    What’s the encoding of ‘o’?        ‘n’?      ‘m’?   
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Huffman Idea: Compress the most frequent letters to be shortest

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Quick example: start off with freqs
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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 (1,n)
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Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Step 2 in-depth:
2a. Initialize node curr
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1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts



Quick example: Step 2
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1+2 m
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (3,no)
 (9,m)



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2
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Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



Quick example: Step 2

3+9
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n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

    Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children



    Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3



    Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b
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    Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b
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    Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (5,e)
 (7,abcd)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (5,e)
 (7,abcd)
 (8,f )
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (8,f )
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (8,f )
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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    Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3
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Can I get another optimal code?
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Lexigraphic Ordering Practice:

- ‘c’ vs ‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’ 



Form the trie for S



Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward
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T[0] does not equal P[0]! Next steps..



Boyer-Moore: Iteratively compare pattern P with target, going backward
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T[0] does not equal P[0]! Next steps.. We mismatched on target a



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a 
   The last occurrence of pattern a



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount – in this ex. We move one after mismatch 

T
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Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward
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Fast forward..



Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1



Boyer-Moore: Iteratively compare pattern P with target, going backward
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Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:





a a a a a a a a a

b a a a a a

T

P
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f(j)

m a m a g a m a



This example is a bit long..



Let T = “rahmamamamagama”
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Mismatch at P[4]
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Mismatch at P[4], align P[2] with T[7]
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m a m a g a m a
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Mismatch at P[4], align P[2] with T[7] Why?      f(3) says these are equal



Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2
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Mismatch at P[4], align P[2] with T[7] Why?  
Mismatch at P[4] → No mismatch before P[4]



Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

Mismatch at P[4], align P[2] with T[7] Why?  
No mismatch before P[4] → I can move pattern two spaces

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T

P


