
PSO 13
Compression, Pattern Matching

justin-zhang.com/teaching/CS251

http://justin-zhang.com/teaching/CS251

Why compression

Huffman Idea: Compress the most frequent letters to be shortest, an example..

12

3 m

n o

Inner-nodes: freqs
Leaves: letters

What is the most freq. letter? What’s the encoding of ‘o’? ‘n’? ‘m’?

0

0 1

1

Huffman Idea: Compress the most frequent letters to be shortest

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

12

3 m

n o

Quick example: start off with freqs

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

Quick example

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

Quick example

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Quick example: Step 2

12

_ m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr

Quick example: Step 2

12

_ m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts

Quick example: Step 2

12

1+2 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (1,n)
 (2,n)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

12

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Quick example: Step 2

_

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

_

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

Quick example: Step 2

3+9

3 m

n o

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m n o

9 1 2

 Q
 (3,no)
 (9,m)

Step 2 in-depth:
2a. Initialize node curr
2b. Set children to be next two minHeap elts
2c. curr.freq = Add up freq of children

 Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

 Q
 (1,a)
 (1,b)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2

 Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2

 Q
 (2,ab)
 (2,c)
 (3,d)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

 Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

 Q
 (3,d)
 (4,abc)
 (5,e)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

 Q
 (5,e)
 (7,abcd)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

 Q
 (5,e)
 (7,abcd)
 (8,f)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12

 Q
 (8,f)
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12

 Q
 (8,f)
 (12,abcde)
 (13,g)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20

 Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20

 Q
 (13,g)
 (20,abcdef)
 (21,h)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

 Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

 Q
 (21,h)
 (33,abcdefg)

Steps:

1. Add all letters to minHeap by their frequencies
2. Pop off min, add to the tree Bottom-up
3. Put the current tree into minHeap with freq = tree size, repeat 2-3

a b

2 c

4

7

d

e

12f

20g

33

54

h

Can I get another optimal code?

a b

2 c

4

7

d

e

12f

20g

33

54

h

Lexigraphic Ordering Practice:

- ‘c’ vs ‘ab’
- ‘abc’ vs ‘abca’
- ‘abbbbb’ vs ‘baaaaa’

Form the trie for S

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

T[0] does not equal P[0]! Next steps.. We mismatched on target a
 The last occurrence of pattern a

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the least amount – in this ex. We move one after mismatch

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward..

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Fast forward.. Same mismatch, jump 1

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time

Boyer-Moore: Iteratively compare pattern P with target, going backward

a a a a a a a a a

b a a a a a

T

P

Same thing will happen 1 more time, and conclude no match

Total compares:

a a a a a a a a a

b a a a a a

T

P

1 2 3 4 5 6 7j

f(j)

m a m a g a m a

This example is a bit long..

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why? f(3) says these are equal

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

r a h m a m a m a m a m a

m a m a g a m a

T

P

Mismatch at P[4], align P[2] with T[7] Why?
Mismatch at P[4] → No mismatch before P[4]

Let T = “rahmamamamagama”
1 2 3 4 5 6 7

0 1 2 0 0 1 2

j

f(j)

Mismatch at P[4], align P[2] with T[7] Why?
No mismatch before P[4] → I can move pattern two spaces

r a h m a m a m a m a m a

m a m a g a m a

m a m a g a m a

T

P

