

Compression, Pattern Matching

Why compression

dec	hex	oct	char	dec	hex	oct	char	dec	hex	oct	char	dec	hex	oct	char
0	0	000	NULL	32	20	040	space	64	40	100	0	96	60	140	•
1	1	001	SOH	33	21	041	1	65	41	101	Α	97	61	141	а
2	2	002	STX	34	22	042		66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	с
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	E	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	1	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	н	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111	1	105	69	151	i
10	а	012	LF	42	2a	052	*	74	4a	112	. J	106	6a	152	j
11	b	013	VT	43	2b	053	+	75	4b	113	К	107	6b	153	k
12	С	014	FF	44	2c	054	,	76	4c	114	L	108	6c	154	1
13	d	015	CR	45	2d	055	-	77	4d	115	Μ	109	6d	155	m
14	e	016	SO	46	2e	056	•	78	4e	116	N	110	6e	156	n
15	f	017	SI	47	2f	057	1	79	4f	117	0	111	6f	157	0
16	10	020	DLE	48	30	060	0	80	50	120	Ρ	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	S	115	73	163	S
20	14	024	DC4	52	34	064	4	84	54	124	Т	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	54	36	066	6	86	56	126	V	118	76	166	V
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	w
24	18	030	CAN	56	38	070	8	88	58	130	Х	120	78	170	x
25	19	031	EM	57	39	071	9	89	59	131	Y	121	79	171	У
26	1a	032	SUB	58	3a	072	1	90	5a	132	Z	122	7a	172	z
27	1b	033	ESC	59	3b	073	;	91	5b	133	1	123	7b	173	{
28	1c	034	FS	60	3c	074	<	92	5c	134	1	124	7c	174	1
29	1d	035	GS	61	3d	075	=	93	5d	135	1	125	7d	175	}
30	1e	036	RS	62	3e	076	>	94	5e	136	۸	126	7e	176	~
31	1f	037	US	63	3f	077	?	95	5f	137	-	127	7f	177	DEL
														a I who would	have a series

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

 $a:1 \ b:1 \ c:2 \ d:3 \ e:5 \ f:8 \ g:13 \ h:21$

Can you generalize your answer to find the Huffman codes when the frequencies are the first n Fibonacci numbers?

(2) A code is called **optimal** if it can be represented by a full binary tree, in which all of the nodes have either 0 or 2 children. Is the optimal code unique?

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \le q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011.

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

2. Is there any other pattern matching algorithm that works better in this scenario?

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based upon forward pattern matching, in which a failure function (also named as "suffix function") is calculated to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically, for a pattern P, its corresponding failure function $F_P(j)$, or F(j) for short, is defined as

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

In other words, F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j]. In brief, the KMP algorithm can be described as: When a mismatch occurs at T[i], if you are

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Answer the following questions:

(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much better than Boyer-Moore?

(2) What is the failure function for the pattern P := "mamagama"?

(3) Let T := "rahrahahahahahahahamaromamagagaoohlala", run the KMP pattern matching algorithm for the pattern P in (2).

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Huffman Idea: Compress the most frequent letters to be shortest, an example..

Inner-nodes: freqs Leaves: letters

What is the most freq. letter? What's the encoding of 'o'? 'n'? 'm'?

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

 $a:1 \ b:1 \ c:2 \ d:3 \ e:5 \ f:8 \ g:13 \ h:21$

Huffman Idea: Compress the most frequent letters to be shortest

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

Quick example: start off with freqs

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Quick example

Steps:

1. Add all letters to minHeap by their frequencies

- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Quick example

Steps:

1. Add all letters to minHeap by their frequencies

- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth: 2a. Initialize node curr <u>Q</u> (1,n) (2,n) (9,m)

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth:

2a. Initialize node curr

2b. Set children to be next two minHeap elts

<u>Q</u> (1,n) (2,n) (9,m)

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth:

2a. Initialize node curr

2b. Set children to be next two minHeap elts

2c. curr.freq = Add up freq of children

<u>Q</u> (1,n) (2,n) (9,m)

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat

m	n	0
9	1	2

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth:

2a. Initialize node curr

2b. Set children to be next two minHeap elts

2c. curr.freq = Add up freq of children

<u>Q</u> (3,no) (9,m)

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth:

2a. Initialize node curr

2b. Set children to be next two minHeap elts

2c. curr.freq = Add up freq of children

<u>Q</u> (3,no) (9,m)

Steps:

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

m	n	0
9	1	2

Step 2 in-depth:

2a. Initialize node curr

2b. Set children to be next two minHeap elts

2c. curr.freq = Add up freq of children

<u>Q</u> (3,no) (9,m)

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

 $a:1 \ b:1 \ c:2 \ d:3 \ e:5 \ f:8 \ g:13 \ h:21$

Q (1,a) (1,b) (2,c) (3,d) (5,e) (8,f) (13,g) (21,h)

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

$$a:1$$
 $b:1$ $c:2$ $d:3$ $e:5$ $f:8$ $g:13$ $h:21$

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree Bottom-up
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(Huffman codes)

Recall that Huffman coding encodes high-frequency character with short codewords such that no codeword is a prefix for some other codeword.

(1) What is an Huffman codes for the following set of frequencies, based on the first 8 Fibonacci numbers?

- 1. Add all letters to minHeap by their frequencies
- 2. Pop off min, add to the tree *Bottom-up*
- 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

- Steps:
 - 1. Add all letters to minHeap by their frequencies
 - 2. Pop off min, add to the tree Bottom-up
 - 3. Put the current tree into minHeap with freq = tree size, repeat 2-3

(2) A code is called **optimal** if it can be represented by a full binary tree, in which all of the nodes have either 0 or 2 children. Is the optimal code unique?

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \le q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011.

Lexigraphic Ordering Practice:

- 'c' vs 'ab'
- 'abc' vs 'abca'
- 'abbbbb' vs 'baaaaa'

(Trie & lexicographic sort)

Given two bit strings $a = a_0 a_1 \dots a_p$ and $b = b_0 b_1 \dots b_q$, we assume WLOG that $p \le q$. Recall that a is said to be **lexicographically less** than b if one of the following happens:

- there exists an integer $j \leq p$ such that $a_i = b_i$ for all $0 \leq i < j$ and $a_j < b_j$.
- p < q and $a_i = b_i$ for all $0 \le i \le p$.

Given a set S of distinct bit strings whose lengths sum to n, show how to use a radix tree (a.k.a. trie for bit strings) to sort S lexicographically in O(n) time. For example, if $S = \{1011, 10, 011, 100, 0\}$, then the output should be the sequence 0, 011, 10, 100, 1011.

Form the trie for S

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

T[0] does not equal P[0]! Next steps..

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

T[0] does not equal P[0]! Next steps.. We mismatched on target a

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

T[0] does not equal P[0]! Next steps.. We mismatched on target a The last occurrence of pattern a

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

Move P (to align target a with pattern a) OR (one after target mismatch)

Whichever moves P the *least* amount – in this ex. We move one after mismatch

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Т	а	а	а	а	а	а	а	а	а
Ρ		b	а	а	а	а	а		

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ		b	а	а	а	а	а		

Fast forward..

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ		b	а	а	а	а	а		

Fast forward.. Same mismatch, jump 1

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ			b	а	а	а	а	а	

Same thing will happen 1 more time

(Backward pattern matching)

The Boyer-Moore algorithm is based upon backward pattern matching. Let us do a simple review via the following questions:

1. Run Boyer-Moore algorithm in the following worst-case scenario:

$$T := \underbrace{aaa \cdots a}_{9}$$
 and $P := baaaaa.$

Boyer-Moore: Iteratively compare pattern P with target, going backward

Т	а	а	а	а	а	а	а	а	а
Ρ				b	а	а	а	а	а

Total compares:

Same thing will happen 1 more time, and conclude no match

2. Is there any other pattern matching algorithm that works better in this scenario?

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based upon forward pattern matching, in which a failure function (also named as "suffix function") is calculated to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically, for a pattern P, its corresponding failure function $F_P(j)$, or F(j) for short, is defined as

$$F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$$

In other words, F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j]. In brief, the KMP algorithm can be described as: When a mismatch occurs at T[i], if you are

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Answer the following questions:

(1) Apply the KMP algorithm to the pattern matching problem in Question 1. Does it perform much better than Boyer-Moore?

Т	а	а	а	а	а	а	а	а	а
Ρ	b	а	а	а	а	а			

(Forward pattern matching)

Another efficient pattern matching algorithm, named the Knuth-Morris-Pratt (KMP) algorithm, is based upon forward pattern matching, in which a failure function (also named as "suffix function") is calculated to determine the most distance we can shift the pattern to avoid redundant comparisons. Specifically, for a pattern P, its corresponding failure function $F_P(j)$, or F(j) for short, is defined as

 $F(j) := \max_{k} \left\{ k \le j - 1 : P[0:k] = P[j - k:j] \right\}.$

In other words, F(j) represents the size of the largest prefix of P[0:j] that is also a suffix of P[1:j].

(2) What is the failure function for the pattern P := "mamagama"?

mamagama

j	1	2	3	4	5	6	7
f(j)							

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

(3) Let T := "rahrahahahahahahahahahamaromamagagaoohlala", run the KMP pattern matching algorithm for the pattern P in (2).

This example is a bit long..

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ	m	а	m	а	g	а	m	а					

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ		m	а	m	а	g	а	m	а				

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ			m	а	m	а	g	а	m	а			

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ				m	а	m	а	g	а	m	а		

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

j	1	2	3	4	5	6	7
f(j)	0	1	2	0	0	1	2

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ				m	а	m	а	g	а	m	а		

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ				m	а	m	а	g	а	m	а		

Mismatch at P[4]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Т	r	а	h	m	а	m	а	m	а	m	а	m	а
Ρ				m	а	m	а	g	а	m	а		

Mismatch at P[4], align P[2] with T[7]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Mismatch at P[4], align P[2] with T[7] Why?

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Mismatch at P[4], align P[2] with T[7] Why? f(3) says these are equal

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Mismatch at P[4], align P[2] with T[7] Why?

Mismatch at $P[4] \rightarrow No$ mismatch before P[4]

- currently at P[j] with some j > 0, then shift P to align P[F(j-1)] with T[i].
- currently at P[0], then shift P[0] to align with T[i+1].

Mismatch at P[4], align P[2] with T[7] Why? No mismatch before P[4] \rightarrow I can move pattern two spaces