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I can’t wait for spring break

Any fun plans



Unfortunately busy week so no slides today :(
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What is an adjacency list?
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Example: indeg. of 1?
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Example: indeg. of 1?

O(|Adjaceny list|)
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Try counting the indegree for v = 1
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For indeg. of vertex i:
Iterate over each vertex list other than i, 
Count for every instant of i you see

O(|E|) time



Let’s see how this looks..



We want to go from this
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1. Iterate through each vertex list i
2. Add the “reverse” to the new 

adjacency list
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Runtime? O(|V| + |E|)
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- Idea: when adding edge (3,4),

Add all edges pointing to 3 
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They both share a (3,4) edge
- Idea: when adding edge (i,j),

Add all edges pointing to i to j (how do we get this?)
GT .adjList(i) is exactly this! 
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Idea: when adding edge (i,j), Add 
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):



1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add 
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)



1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add 
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)



1

4

5

3
6

2 1

4

5

3
6

2

Vertex Adj

1 3,4,5

2

3 2

4 3

5 4

6

Vertex Adj

1

2 3

3 1 4

4 1 5

5 1

6

Vertex Adj

1 3

2

3

4

5

6

G GT G2

Idea: when adding edge (i,j), Add 
all edges pointing to i to j

For i in |V|:
For j in G.adjList(i):

add j to G2.adjList(i)
for k in GT.adjList(i):

add j to 
   G2.adjList(k)

Bad example lol
Lets continue
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edge in G = Look through 
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Adjacency Matrix

Edges represented in a |V| x |V| matrix

E.g. if undirected..
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Adjacency Matrix

Edges represented in a |V| x |V| matrix

E.g. if directed..
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“Row goes to column”



Someone give me a complete binary search tree
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Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)
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Algorithm:
1. Start at (i,j) = (1,1) entry
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Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
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Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down
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Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)
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Obs 1: If universal sink, col 3 has 1 in every entry except (3,3)

Obs 2: row 3 is all 0s

Algorithm:
1. Start at (i,j) = (1,1) entry
2. while i < |V| :

a. If entry(i,j) = 0: i += 1 \\go right
b. else: j += 1 \\go down

We only go down when entry(i,j) = 1
By obs 1, we will go down 2 times at most
We go right when entry(i,j) = 0 By obs 2, we go right |V| times    



We can try..



Hmm if I can’t come up with an example, prob false

The answer key says.. 

But I don’t know what this means lol

Why should the degree be an even number?
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We can prove it by counting

 

A combinatorial
counting argument

Demonstrating another 
sorting algorithm
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We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)
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graph of 5 nodes is.. 
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counting argument



Hmm if I can’t come up with an example, prob false

We can prove it by counting

Assume for the sake of contradiction, this is possible

Then there must be at least 15 edges (true)

But the maximum number of edges in a

graph of 5 nodes is.. (5 choose 2) = 10

This is less than 15, contradiction!

 

A combinatorial
counting argument



We can try.. (again)



We can’t do this because a vertex with degree n - 1 connects to all other vertices

There cannot be a vertex with 0 degree 

Easy peasy
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Lemmas: intermediate results used to prove theorems
Corollaries: easy follow-ups to to theorems

IMO this stands on its own
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Suppose G is connected and acyclic

Can |E| < |V| - 1?

Intuition: lose connectivity

Lets prove this

|V| = 5, |E| = 3
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Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex, 
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WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Connectivity implies I can take a walk to every vertex on the graph

Say I talk this walk starting on some vertex, 

and mark every edge I step on

For each unique vertex I visit, I had to take an edge there

Since I visit |V| - 1 unique vertices (minus the start), |E| >= |V| - 1
|V| = 5, |E| = 3



WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

We showed |E| >= |V| - 1 

Can |E| > |V| - 1?

|V| = 5, |E| = 5
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WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

(Anywhere I add the edge will create a cycle)

We argue this formally

|V| = 5, |E| = 5
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WTS: 1 + 2 -> 3

Suppose G is connected and acyclic

Assume for the sake of contradiction |E| > |V| - 1

Connected implies longest path in the graph is through

all |V| nodes.

But a path of |V| nodes only has |V| - 1 edges

|V| nodes with |V| edges forms a cycle, contradiction!
|V| = 5, |E| = 5



WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

|V| = 5, |E| = 4
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Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.
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WTS: 1 + 3 -> 2

Suppose connected and |E| = |V| - 1

Can there be a cycle?

No, we showed to be connected, we need at least |V| - 1

edges.

Suppose there is a cycle.

There is an edge you can delete to get rid of the cycle

We still have connectivity with |V|  -2 edges, contradiction |V| = 5, |E| = 4
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WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

What do I notice?

|V| = 5, |E| = 4
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Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a 

unique vertex + a seen vertex (except the starting edge)

The edge I start with has 2 unique vertices

# vertices seen = (2) + (|E| - 1) (1) = 2 + |V| - 2 = |V| |V| = 5, |E| = 4



WTS: 2 + 3 -> 1

Suppose acyclic and |E| = |V| - 1.

Suppose I remove all |E| edges from the graph

I place them back one by one.

By acyclic property, any edge I add back has to contain a 

unique vertex + a seen vertex (except the starting edge)

The edge I start with has 2 unique vertices

# vertices seen = (2) + (|E| - 1) (1) = 2 + |V| - 2 = |V|, hence connected |V| = 5, |E| = 4
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BFS(s):

    stack/queue(?) visit;

     Add s to visit 

     while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

Lets analyze cost
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BFS(s):

    stack/queue(?) visit;

     Add s to visit 

     while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

What’s the cost of this when seen is a hashmap? O(1)

What’s the cost of this?  O( # v’s neighbors) <= O(|V|)

How many iterations of the while loop?    O(|V|)
                                              
 Total cost: O(|V|2)



BFS(s):

    stack/queue(?) visit;

     Add s to visit 

     while visit nonempty:

v = visit.pop()

If v not seen yet, add its neighbors to visit

Diameter = length of longest path in the 
tree
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Diameter = length of longest path in the tree

Suppose this is my tree

From visual inspection, clear that diameter is g to f

But who says we know where the “root” is?

a

b
c

d
e

f
g

Fun fact: this is how trees look irl
(I touched grass 7 years ago)
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Diameter = length of longest path in the tree

Suppose this is my tree

So the best we can do is just to run BFS from some starting node.

Say we run BFS(c) and return last vertex seen

We get g (this was one end point) How do we get the other? (vertex f)

Run BFS(g)

Proof in the solution.pdf : kinda tedious but intuitively works

a

b
c

d
e

f
g
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