PSO 10

Strong and Weak Connection

https://justin-zhang.com/teaching/CS251



https://justin-zhang.com/teaching/CS251

Question 1
(Articulation point)

We define an articulation point as a vertex that when removed causes a connected graph to become
disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

(1) How can we efficiently check whether or not a graph is disconnected?

(2) How to determine if a node u is an articulation point or not?



Question 2
Consider the directed graph G = (V, E) given below:

A

where the set of vertices is V = {A, B,C, D, E} and the set of edges is:
E={(A,B),(A,C),(B,C),(B,D),(C,E),(D,E)}.

1. Construct the adjacency matrix A of G.

2. Compute the transitive closure of G using Warshall’s algorithm.
3. Draw the graph representation of the transitive closure of G.

4. Determine the reachability of each node in G.

5. ldentify if G is strongly connected. If not, can you add one edge to make G become a strongly
connected graph?



Question 3

Consider the following graph G:

Let G4 be a directed graph using the vertices of GG. For a pair of vertices u and v connected by an edge
in GG, their respective directed edge in G4 is as follows:
(u,v), deg(u) < deg(v)V (deg(u) = deg(v) Au < v)

Edge with vertices v and v = :
(v,u), Otherwise

1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make G4 strongly connected.

2. Show all the topological orderings of G 4.



(undirected)
(1) How can we efficiently check whether or not a graph is disconnected?

Two vertices u,v are connected if there is some way to get from u — v.

Graph is connected if for all u,v vertices, u and v are connected

co

Are there any algorithms that can help us here?



(undirected)
(1) How can we efficiently check whether or not a graph is disconnected?

Two vertices u,v are connected if there is some way to get from u — v.

Graph is connected if for all u,v vertices, u and v are connected

co

Use BFS/DFS, count the number of vertices visited



Question 1
(Articulation point)

We define an articulation point as a vertex that when removed causes a connected graph to become
disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

(2) How to determine if a node u is an articulation point or not?

Any idea from pt 17?




Question 1
(Articulation point)

We define an articulation point as a vertex that when removed causes a connected graph to become
disconnected. For this problem, we will try to find the articulation points in an undirected graph G.

(2) How to determine if a node u is an articulation point or not?

Any idea from pt 1? Check connectivity when u is deleted

e e e

\

Exercise: Suppose you wanted to find all articulation points. Can you do so in O(|V| + |E|) time?
Hint: a point is an articulation point iff it is not in a cycle.



Question 2
Consider the directed graph G = (V, E) given below:

1. Construct the adjacency matrix A of G.

uv @ A B C

m O O ® | >
o




Question 2

Jonsider the directed graph G = (V, E) given below:

D

2. Compute the transitive closure of G using Warshall’s algorithm.

What's your algorithm Warshall/Floyd/Ingerman/Roy/Kleene?

i 3 Worst-case space .
History and naming [edt) siemie pace ©(|V[%)

The Floyd-Warshall algorithm is an example of dynamic programming, and was

published in its currently recognized form by Robert Floyd in 1962.(3] However, it is essentially the same as algorithms previously
published by Bernard Roy in 1959[4] and also by Stephen Warshall in 196205 for finding the transitive closure of a graph,® and is
closely related to Kleene's algorithm (published in 1956) for converting a deterministic finite automaton into a regular expression, with
the difference being the use of a min-plus semiring.[”l The modern formulation of the algorithm as three nested for-loops was first

described by Peter Ingerman, also in 1962.[€]



algorithm Floyd-Warshall(M:adjacency matrix representing G(V,E))

RCD « M
n < |V|

for k from @ to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®Ji,j1 « R&V[i,j] or (R*V[i,k] and RE VL, j])
end for
end for
end for

return R D
end algorithm



RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R(®D
end algorithm

z-
I
>

R C E
)
A 1 0
B 1 0
C 0 1
D 0 1

1




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R(®D
end algorithm

R C E
)
A 1 0
B 1 0
C 0 1
D 0 1

1

s s
J




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >

1

s s
J




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >

1

o
w >




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >

1

o
o>




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >

1

o
o>




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >
J

s m——

1




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

o o ®o >
J

s m——

1




o o ®o >

1

RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

What's the finalR®? ro A ' B ¢ D | E

o
> W




R C E
)
A 1 0
B 1 0
C 0 1
D 0 1

1

RED « M
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

Whats the finalR©? ro A ' B ¢ | D | E
Same as R, why?

Al 0o 1 1 00
k=A B 0o 0 1 1 0
cC o0 o0 0 o0 1
=B D 0 0 0 0| 1
J=A
E 0 0 0 0 0




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

s m——




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

s m——




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

s m——




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

s m——




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

s m——




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

R A B C D E

Ao 1 112
k=B B 1 1

C 1
=A D 1
j=E

E




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

R A B C D E

Al o 1 1 10
k=B B 1 1

C 1
=A D 1
j=E

E




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R&V[;,j] or (R®*V[ik] and R&VIL,j])
end for
end for
end for

return R D
end algorithm

What's the final R(1?

k=B

B
A

s s
J




RO C E
A 1 0
B 1 0
C 0 1
D 0 1
E 0 0

RED « M
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j]1 « R®V[;,j] or (R®V[ik] and REDIL,j])
end for
end for
end for

return R D
end algorithm

What's the final R(1?

Al o 1 1 10
k=B B 0o 0 1 | 1|1
cC o0 o0 0 o0 1
=5 D 0 0 0 0| 1
J=A
E 0 0 0 0 0




RED « M
n <« |V|

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j]1 « R®V[;,j] or (R®V[ik] and REDIL,j])
end for
end for
end for

return R D
end algorithm

What's the final R©@?

k=C




end

What's the final R©@?

k=C

RED « M
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j]1 « R®V[;,j] or (R®V[ik] and REDIL,j])
end for
end for
end for

return R 1D
algorithm

R C E
A 1 0
B 1 1
C 0 1
D 0 1
E 0 0




RED « M
n < |V]

for k from © to n—1 do
for i from ©@ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and REDk,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=D




RED « M
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and REDk,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=D

D
R C E
A 1 1
B 1 1
C 0 1
D 0 1
E 0 0




RED « M
n < |V]

for k from © to n—1 do
for i from @ to n—1 do
for j from @ to n—1 do
R®[i,j] « R& V[, j] or (R®V[ik] and REDk,j])
end for
end for
end for

return R D
end algorithm

What's the final R®)?

k=E

D
R®) C E
A 1 1
B 1 1
C 0 1
D 0 1
E 0 0




Summary
Foreach k =A,B,C,D,E:
Foreachi= ...
Foreachj=....
Check if there is a path between
i and j through k

RCD: Adj Matrix

ROA). RtD + (paths through A)

R(B): ROA+ (paths through B)
R@C): R(B) + (paths through C)
REGD): REC)+ (paths through D)
R@#E): RED)+ (paths through E)



Question 2
Consider the directed graph G = (V, E) given below:

A > » E
| / P . 3 E
l) | /
3. Draw the graph representation of the transitive closure of G.
R® B C D
A 1 1 1
B 0 1 1
C 0 0 0
D 0 0 0
E 0 0 0




Question 2

/"\ Consider the directed graph G = (V, E) given below:

B
|/ Pl . 3 E
l)/

4. Determine the reachability of each node in G.

o o ol o o The transitive closure can help here




(w

5. ldentify if G is strongly connected. If not, can you add one edge to make G become a strongly
connected graph?



Let (G4 be a directed graph using the vertices of GG. For a pair of vertices u and v connected by an edge
in G, their respective directed edge in G4 is as follows:

Bilie with vertipes awand n:= (u,v), deg(u) < deg(v) V (deg(u) = deg(v) Au < v)
(v,u), Otherwise

Let's draw G
First, calculate deg(v)




Question 3

Consider the following graph G:

Let G4 be a directed graph using the vertices of G. For a pair of vertices u and v connected by an edge
in G, their respective directed edge in G4 is as follows:
(u,v), deg(u) < deg(v)V (deg(u) = deg(v) Au < v)

Edge with vertices v and v = i
(v,u), Otherwise

Let's draw G g




deg(v)

1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make Gy strongly connected.




1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make (G4 strongly connected.

If we run Warshall.. il IS L T IS T
0 1 1 1 1 1
1 1 1 1
2 1
3 1
4
5 1
6 1
7 1

Observations:



1. Is G4 strongly connected? If yes, explain why. Otherwise, list the minimum number of edges
required to make (G4 strongly connected.

If we run Warshall.. il I I S T A B
1 1 1 1 1 1 1
1 1 1 1 1
1 1 1
1 1 1
1 1
1 1
1

Adding (4,0) makes strongly connected



2. Show all the topological orderings of G 4.

“Pulling” the graph to make source/sink a little more clear




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 1st level a little more clear

Note: Exclude prev. “pulled” nodes




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 2nd level a little more clear




2. Show all the topological orderings of G 4.

“Pulling” the graph to make 3rd/4th level a little more clear




2. Show all the topological orderings of G 4.

| can write out the topo orderings now
5 | 5 : Any node on the same level can go in either order




