PSO 4

One minute Midterm vent session

Binary Heaps

Max-heap (aka Max Priority Queue) if

the key in each node is larger than or
equal to the keys in that node’s two
children (if any).

Min-heap (aka Min Priority Queue) if
the key in each node is less than or
equal to the keys in that node’s two
children (if any).

Binary Heaps as Arrays

° c 1 2 3 4 5 6 7

BH| A|B|C|D|E|F]|G]|H

G G leftchild(i € Z,,) :=2i+ 1

° G ° e rightchild(i € Zy,) := 2i + 2
[—1
H n parent(i € Z*) := llT

AT

(Binary heap)

Question 3

(1) If the binary heap is represented as an array, and the root is stored at index 0, where is the left child

of the node at index 7 = 23 stored?

m o awe»

45
46
47
48
49

General formula for this?

Question 3

(Binary heap)
(1) If the binary heap is represented as an array, and the root is stored at index 0, where is the left child
of the node at index ¢ = 23 stored?
45
46
47 .

Binary Heap Cheatsheet

48 left(i) = 2i + 1
49 right(i) = 2i + 2

QW

(2) If the binary heap is represented as an array, and the root is stored at index 0, where is the parent
of the node at index i = 99 stored?

Y ow e
M=
\'

Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

(2) If the binary heap is represented as an array, and the root is stored at index 0, where is the parent
of the node at index i = 99 stored?
45
46
47
48
49

Y ow e

Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2
parent(i) = L(i- 1)/ 2]

(3) If the binary heap is represented as an array of length n = 99, and the root is stored at index 0,
where is the last non-leaf node stored?

A. 45
B. 46
C. 47
D. 48
E

. 49 Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

parent(i) = L(i- 1)/ 2]

(3) If the binary heap is represented as an array of length n = 99, and the root is stored at index 0,
where is the last non-leaf node stored?

A. 45

B. 46

C. 47

D. 48

E. 49 Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

parent(i) = L(i- 1)/ 2]
lastNonLeaf() = L(n/2) -1l

General intuition: There are ~n/2
leaves since these are complete trees

(4) If the binary heap is represented as an array of length n = 99, and you want to insert an element,
how many different locations of the element are possible after insertion?

A. 5

B. 6

C. T

D

E Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2

parent(i) = L(i- 1)/ 2]
lastNonLeaf() = L(n/2) -1l

(4) If the binary heap is represented as an array of length n = 99, and you want to insert an element,
how many different locations of the element are possible after insertion?

A5
B. 6
C. T
D
E

Binary Heap Cheatsheet
left(i) = 2i + 1
right(i) = 2i + 2
parent(i) = L(i- 1)/ 2]
lastNonLeaf() = L(n/2) -1l
height() = Lig nl

Question 2
(Heap sort) In the following questions, we consider Heap sort using Heapify.
(1) Show the array {3,4,1,0,9,2} as it goes through Heap sort (in the ascending order).
(2) Given K number of sorted (ascending ordered) arrays each having N/K elements in it, your task is
to merge all these arrays to form a N-element final sorted array (also in the ascending order).
(2.1) Propose a simple solution to the problem which may run in O(N log(/N)) time.

(2.2) Can you propose a better algorithm to solve the problem? What is the time complexity of your
proposed solution?

Heap Insertion

1. Insert at next leaf

2. Siftup

c 1 2 3 4 5 6 7

10

23

17

28

34

89

22

Demonstration: insert(9)

(Max) Heapify: Turning your arrays into Heaps

For each non-leaf node from the last to the first:

while it is less than its largest child, swap it downward

Demonstr. : Heapify [4 6 3 5 7 1]

[463571]
Heap Sort

AS SEEN ON

Andres’s Lecture

Idea: In a max heap, the max element is always at the root, sort backwards, from largest to smallest

LN =

Heapify your array
Swap root with last leaf, excluding the elements you’ve already swapped

Fix heap by sifting down, excluding the elements you've already swapped
Repeat steps 2-4

<
Trec / \ sw-'t:”
¢ |3 s

1Y

Sl 40

Aoy [7 ¢ 3541

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you’ve already swapped
Repeat steps 2-4

b=

=
C\ 3 e r\) {
‘
S 4 |1 il
A oy [7¢3541) [1¢3547]

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you’ve already swapped
Repeat steps 2-4

b=

7 /
) Tree 7% Suap /N s‘aﬁan g \3 Susg 12
il ¢ 3 L [1 WS f IN et
(N 5 47 i 47 —
S| 4\
Af‘fw E?C?,SHQ_] [163547] Le s 3 L]
1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

=c 4
7 /
et swr, LY Y 2 " B 5
ey ¢ 3 oL R " I\ A LA reo}
(N s 47 W47 =9 (1 b 2
S| 4\
Afrw E7cssq1] [1635«7] L¢€s 3 1ug] C‘lﬁ‘zncﬂ
1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

Fc 4
7 /
Tree 4\ suar ‘/ > 5, %;; _‘.5/ \:3 ST::;’ , s/ \3
g I3 o f / \

AT st T 7 PR o I
S| 4\

Array [7¢3541) [1 635477 L¢s 3 1uas] C‘lﬁ‘zlcﬂ

1. Heapify your array

2. Swap root with last leaf, excluding the elements you’ve already swapped

3. Fix heap by sifting down, excluding the elements you’ve already swapped

4. Repeat steps 2-4

St

down

roof
—

/
4

/\
6

\’\u/kh

I

(s1931¢ 2]

/i

) Rl 4]
T '
Tree 4\ o AIRS s _.15/ \ Swap b 5/\3
¢ 3 v 612 | Lo N7 it L
s[>l./ 4 ﬂ T[4 T [TF
Arrw [7cssq1] [1 635477 L€ s 3 1ug) C‘lﬁ‘zlcﬂ
|\
/
4 3
/N
5 6

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you've already swapped
Repeat steps 2-4

b=

s/ ft

down

roof
—

/
4
/\

6

'\l\.‘_‘,/“1

I

(s1931¢ 2]

/i

) Rl 4]
7 /

e T A0 M I e e
¢. 3 s = (N A 0 AN i | O
AT s 47) 47 =7 [ip 7
S| 4\

Arrw [7c35q1] [1 635477 L€ s 3 1ug) C‘ls‘zlcﬂ

1. Heapify your array

2. Swap root with last leaf, excluding the elements you’ve already swapped

3. Fix heap by sifting down, excluding the elements you’ve already swapped

4. Repeat steps 2-4

s/ ft

down

roof
—

/
4
/\

6

oy
\l\.u/

I

(s1931¢ 2]

/i

4 3

Swap fo J\ s/ ft /£ \

ot R ot] A F

iR E — e 2
4 513 1)¢ 7] (54931677

/i

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you've already swapped
Repeat steps 2-4

b=

4 3
Swap fo J\ s/ ft /£ \
wt 7 ot] AP
iR E — e 2
4 513 1)¢ 7] (54931677
/
3 |
N I\
71 A
r; 5Ty 7

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you've already swapped
Repeat steps 2-4

b=

1.
2.
3.
4.

-C 4
= ; :

A oot c/) sdi’.ﬁ 5 ST:;M /J b
¢ |3 Z5 \ G A\ Y A/

Y <474 = 7047 iR E

Sift /

down 4
=] @
6

oy
\I\.u/

4 513 1)¢ 7] (54931677

g

Heapify your array

Swap root with last leaf, excluding the elements you’ve already swapped
Fix heap by sifting down, excluding the elements you've already swapped
Repeat steps 2-4

|

I\ b
&AL ki
5\:7-5514‘7

Ci 345 4 7))

Exercise: Equivalent Heap Sorts

Working of Heap Sort

1. Since the tree satisfies Max-Heap property, then the largest item is stored at the root

node.

2. Swap: Remove the root element and put at the end of the array (nth position) Put the

last item of the tree (heap) at the vacant place.
3. Remove: Reduce the size of the heap by 1.

4. Heapify: Heapify the root element again so that we have the highest element at root. \\

5. The process is repeated until all the items of the list are sorted.

Heapify your array

Swap root with last leaf, excluding
the elements you've already
swapped

Fix heap by sifting down, excluding
the elements you've already
swapped

Repeat steps 2-4

(Heap sort) In the following questions, we consider Heap sort using Heapify.

(1) Show the array {3,4,1,0,9,2} as it goes through Heap sort (in the ascending order).

l) E?/H/l/ OC‘/Z]
Stepl) arren fobey

d@ J’@}'@ ""@ﬁ;@ e

\
Y @@

(Heap sort) In the following questions, we consider Heap sort using Heapify.

(1) Show the array {3,4,1,0,9,2} as it goes through Heap sort (in the ascending order).

O [&i’: O O(O{, [G/ \q| ‘7‘ [q'
- (4
o i e (90,2340
% ’a =

Heap Summary Costs

For a heap with ¢ items,
Heapify: O()

Add/Pop: O(log)
Heap Sort: O(log)

(2) Given K number of sorted (ascending ordered) arrays each having N/K elements in it, your task is
to merge all these arrays to form a N-element final sorted array (also in the ascending order).

(2.1) Propose a simple solution to the problem which may run in O(N log(/N)) time.

(2) Given K number of sorted (ascending ordered) arrays each having N/K elements in it, your task is
to merge all these arrays to form a N-element final sorted array (also in the ascending order).

(2.1) Propose a simple solution to the problem which may run in O(N log(/N)) time.

Just run merge sort on the combined array

(2) Given K number of sorted (ascending ordered) arrays each having N/K elements in it, your task is
to merge all these arrays to form a N-element final sorted array (also in the ascending order).

(2.1) Propose a simple solution to the problem which may run in O(N log(/N)) time.

(2.2) Can you propose a better algorithm to solve the problem? What is the time complexity of your

proposed solution?

Example (N =12, K= 3):

1 3 5 7
2 4 5 5
9 10 11 12

Can | use a heap somehow?

ldea: index-wise heap sorting

Example (N =12, K= 3):

1 3 5 7
2 4 5 5
9 10 11 12

lteratively sort and add items to the heap

/

This is a heap (as seen in the wild)

ldea: index-wise heap sorting

Example (N =12, K= 3):

1.

1 3 S} 7

2 4 5 5

9 10 11 12
-

lteratively sort and add items to the heap

ODN -

Add first index elements to heap

ldea: index-wise heap sorting

Example (N=12, K= 3):z
lteratively sort and add items to the heap

1 3 5 7
2 4 5 5
9 10 | 11 12 2
N
1. Add first index elements to heap \

2. Pop heap and append to res array

res= |1

ldea: index-wise heap sorting

Example (N=12, K= 3):z

lteratively sort and add items to the heap

1 3 5 7
2 4 5 5
2
3
4
9 10 11 12
9
10

 »

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res= |1

|dea: index-wise heap sorti

Problem
Heap size at most N

Example (N=12, K= 3):z Overall will be O(NlogN)

1 3 5 7
2 4 5 5
2
3
4
9 10 11 12
9
10
_—

1. Add first index elements to heap

2. Pop heap and append to res array
3. Repeat for each index?

res= |1

Keeping our heap to size K

Example (N=12, K= 3):z

lteratively sort and add items to the heap
1 3 5 7

O N

—

Add first index elements to heap
Pop heap and append to res array

W N

Repeat for each index? res = |1

Only add next index element from popped array

Keeping our heap to size K

Example (N=12, K= 3):z

lteratively sort and add items to the heap
1 3 5 7

O wN

9 10 11 12

 »

Add first index elements to heap
Pop heap and append to res array

—

W N

Repeat for each index? res = |1

Only add next index element from popped array

Keeping our heap to size K

Example (N=12, K= 3):z

lteratively sort and add items to the heap
1 3 5 7

O W

—

Add first index elements to heap /
Pop heap and append to res array

W N

Repeat for each index? res = |12

Only add next index element from popped array

Keeping our heap to size K

Example (N=12, K= 3):z

lteratively sort and add items to the heap
1 3 5 7

o B~ W

9 10 11 12

 »

Add first index elements to heap
Pop heap and append to res array

—

W N

Repeat for each index? res = |12

Only add next index element from popped array

Keeping our heap t

—

W N

Okay.. but how do we know:

belongs to?
2. ltsindex in the array

Example (N =12, K

1 3 S}

1. which array the popped element

S to the heap

9 10 11 12

 »

o B~ W

Add first index elements to heap

Pop heap and append to res array
Repeat for each index?

Only add next index element from popped array

res =

12

Store the array number and the index!

—

@ N

Example (N=12, K= 3):z

0
1 3 5 7
1
2 4 5 5
2
9 10 11 12
 »

Add first index elements to heap

Pop heap and append to res array
Repeat for each index?

Only add next index element from popped array

lteratively sort and add items to the heap of the form
x,array #,index

3,0,0
41,1
9,2,0

res = 12

Store the index

Example (N=12, K= 3):z

0 Iteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1
2 4 5 5

2 4,11
9 10 | 11 | 12 9.2.0

1. Add first index elements to heap
2. Pop heap and append to res array P
3. Repeat for each index? res =

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0

1 3 5 7
1

2 4 5 5
2

9 10 11 12

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

Only add next index element from popped array

Iteratively sort and add items to the heap of the form
x,array #,index

4,11
5,0,2
9,2,0

res = 123

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1
2 4 5 5

2 5,0,2
9 10 | 11 | 12 9.2.0

1. Add first index elements to heap
2. Pop heap and append to res array .
3. Repeat for each index? res =

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0

1 3 5 7
1

2 4 5 5
2

9 10 | 11 12

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

Only add next index element from popped array

Iteratively sort and add items to the heap of the form
x,array #,index

51,2
5,0,2
9,2,0

res = 1234

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index
1
2 4 5 5
2
9 10 | 11 | 12 50,2
9,2,0
1. Add first index elements to heap
2. Pop heap and append to res array 12345
3. Repeat for each index? res =

Only add next index element from popped array

Store the index

—

@ N

Example (N=12, K= 3):z

0

1 3 5 7
1

2 4 5 5
2

9 10 | 11 12

Add first index elements to heap

Pop heap and append to res array
Repeat for each index?

Only add next index element from popped array

lteratively sort and add items to the heap of the form
x,array #,index

51,3
5,0,2
9,2,0

res = 12345

Store the index

Example (N=12, K= 3):z

0 Keep sorting the remaining arrays
1 3 5 7

1
2 4 5 5

2 5,0,2
9 10 11 12 9,2,0

1. Add first index elements to heap
2. Pop heap and append to res array _ rEree
3. Repeat for each index? res =

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1
2 4 5 5

2 5,0,2
9 10 | 11 | 12 9.2.0

1. Add first index elements to heap
2. Pop heap and append to res array P
3. Repeat for each index? res =

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1

9,2,0

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index? res = 1234355

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1
2 4 5 5

2 7,0,3
9 10 11 12 9,2,0

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index? res = 1234355

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0 lteratively sort and add items to the heap of the form
1 3 5 7 x,array #,index

1

9,2,0

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index? res = | 12343357

Only add next index element from popped array

Store the index

Example (N=12, K= 3):z

0 Add everything left from last array to res
1 3 5 7

1

9,2,0

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index? res = | 12343357

Only add next index element from popped array

Time complexity?

—

@ N

Example (N=12, K= 3):z

Add everything left from last array to res

0

1 3 5 7
1

2 4 5 5
2

9 10 11 12

Add first index elements to heap

Pop heap and append to res array
Repeat for each index?

|

|

S

res =

Only add next index element from popped array

1234555791011 12

Time complexity?

—

W N

Example (N=12, K= 3):z

0

1 3 5 7
1

2 4 5 5
2

9 10 11 12

Add first index elements to heap

~

\

/

O(NlogK) cost

~

N add/pop heap operations on a heap of size K) €S

/

N

Pop heap and append to res array
Repeat for each index?

Only add next index element from popped array

res =

1234555791011 12

Thank you!

Bonus content after this slide..

Your photo here

Your photo here

Your photo here

Are you a linked list? Because
I love you from head to tail

From:
To:

Your photo here

Your photo here

Roses are red,
Array resize is amortized,
Sorry, I got lost in your amber eyes Your photo here

From:
To:

Your photo here

