
PSO 4

One minute Midterm vent session

Binary Heaps

Binary Heaps as Arrays

&

OG

General formula for this?

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2

D

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2

S

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2
parent(i) = ⌊(i - 1) / 2⌋

-
)

= 1

D

/
2 3
=>

-

4
-

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2
parent(i) = ⌊(i - 1) / 2⌋

-

g F
D

/ 49
2-

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2
parent(i) = ⌊(i - 1) / 2⌋

lastNonLeaf() = ⌊(n / 2) - 1⌋

General intuition: There are ~n/2
leaves since these are complete trees

D

I

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2
parent(i) = ⌊(i - 1) / 2⌋

lastNonLeaf() = ⌊(n / 2) - 1⌋

D
hint : (109299) = 6

6 &.

Binary Heap Cheatsheet
left(i) = 2i + 1

right(i) = 2i + 2
parent(i) = ⌊(i - 1) / 2⌋

lastNonLeaf() = ⌊(n / 2) - 1⌋
height() = ⌊lg n⌋

Freight +1

I

Heap Insertion

1. Insert at next leaf
2. Sift up

Demonstration: insert(9)

&

q

m
*0

23

m
D

(Max) Heapify: Turning your arrays into Heaps

For each non-leaf node from the last to the first:

while it is less than its largest child, swap it downward

Demonstr. : Heapify [4 6 3 5 7 1]

2463571]

-
631)571

Heap Sort

Idea: In a max heap, the max element is always at the root, sort backwards, from largest to smallest

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

Andres’s Lecture

[4 6 3 5 7 1]

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

,
I

64 !

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

C

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4

1. Heapify your array
2. Swap root with last leaf, excluding the elements you’ve already swapped
3. Fix heap by sifting down, excluding the elements you’ve already swapped
4. Repeat steps 2-4 O(nlogn)

Exercise: Equivalent Heap Sorts

1. Heapify your array
2. Swap root with last leaf, excluding

the elements you’ve already
swapped

3. Fix heap by sifting down, excluding
the elements you’ve already
swapped

4. Repeat steps 2-4

Heap Summary Costs

For a heap with 🎺 items,

Heapify: O(🎺)

Add/Pop: O(log 🎺)

Heap Sort: O(🎺log 🎺)

Just run merge sort on the combined array

Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Can I use a heap somehow?

$2345557910
11 z]

Idea: index-wise heap sorting

Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

This is a heap (as seen in the wild)

Idea: index-wise heap sorting

Example (N = 12, K = 3):

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

1
2
9

1. Add first index elements to heap

Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

2
9

1. Add first index elements to heap
2. Pop heap and append to res array

res = 1

Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

 2
3
4
9
10

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1

Idea: index-wise heap sorting

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

 2
3
4
9
10

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?

res = 1

Problem
Heap size at most N

Overall will be O(NlogN)

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

2
9

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

res = 1

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

2
3
9

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

res = 1

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

3
9

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

res = 1 2

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

3
4
9

res = 1 2

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Keeping our heap to size K

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap

3
4
9

res = 1 2

Okay.. but how do we know:
1. which array the popped element

belongs to?
2. Its index in the array

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the array number and the index!

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

Iteratively sort and add items to the heap of the form
x,array #,index

3,0,0
4,1,1
9,2,0

res = 1 2

0

1

2

=>

(1)

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
4,1,1
9,2,0

res = 1 2 3

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
4,1,1
5,0,2
9,2,0

res = 1 2 3

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,1,2
5,0,2
9,2,0

res = 1 2 3 4

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12 5,0,2
9,2,0

res = 1 2 3 4 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,1,3
5,0,2
9,2,0

res = 1 2 3 4 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4 5 5

0

1

2

Keep sorting the remaining arrays

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
5,0,2
9,2,0

res = 1 2 3 4 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
7,0,3
9,2,0

res = 1 2 3 4 5 5 5

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5 7

0

1

2

Iteratively sort and add items to the heap of the form
x,array #,index

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Store the index

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12
9,2,0

res = 1 2 3 4 5 5 5 7

0

1

2

Add everything left from last array to res

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Time complexity?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

res = 1 2 3 4 5 5 5 7 9 10 11 12

0

1

2

Add everything left from last array to res

1. Add first index elements to heap
2. Pop heap and append to res array
3. Repeat for each index?
 Only add next index element from popped array

Time complexity?

Example (N = 12, K = 3):z

1 3 5 7

2 4 5 5

9 10 11 12

res = 1 2 3 4 5 5 5 7 9 10 11 12

0

1

2

Add everything left from last array to resN add/pop heap operations on a heap of size K

O(NlogK) cost

N/k

Thank you!

Bonus content after this slide..
W
/ TCM

E

⑭

lognit (
-T(ix)

Cost at each
level : C

19 +Ce
-8 # levels : log((n)T()= C'soppul
=

Ed(keyu)

-for adconstants .

Are you the root of my heap?
Because you’re my #1 priority

From:
To:

Your photo here

There exists a constant c and n0 > 0
such that

myAttractionToYou(n) ≥ g(n)

for all non-constant g(n) and n ≥ n0.

From:
To:

Your photo here

lim = 0
 n -> ∞

for all non-constant g(n).

From:
To:

Your photo here

g(n)

myAttractionToYou(n)

Are you a linked list? Because
I love you from head to tail

From:
To:

Your photo here

Be-leaf me, I’m not a
complete binary tree
without you at my
(left-most) side

From:
To:

Your photo here

Roses are red,
Array resize is amortized,
Sorry, I got lost in your amber eyes

From:
To:

Your photo here

I’m approaching you,
asymptotically

From:
To:

Your photo here

